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Abstract

The study of 22Na beta decay offers an opportunity to test the

Standard Model of Particle Physics via measurements of the β−γ
angular correlation. A previous measurement of this correlation

yielded a non-zero value, indicating the need for a higher-order

matrix element to the decay, beyond the allowed V −A approxi-

mation. On assuming the Conserved Vector Current (CVC) hy-

pothesis for weak interactions and using the magnetic dipole M1

width of the analog 2+
1 state in 22Na, one obtains an unexpect-

edly large ‘second-class’ form factor for 22Na β decay that is in

disagreement with the Standard Model prediction.

This thesis describes an analysis of data obtained from a previ-

ous 21Ne(p, γ) experiment to obtain the M1 width of the 2+
1 state

of interest in 22Na. This work aims to use the M1 width and

the independently measured of the β − γ angular correlation to

obtain a higher-order Standard-Model-allowed weak magnetism

form factor for the decay, in an attempt to explain the observed

anomaly mentioned above.
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Chapter 1

Introduction

The Standard Model of Particle Physics is a highly successful theory that

describes elementary particles and their interactions at the most fundamen-

tal level. Yet, it leaves several questions unanswered. While there have been

several proposed theoretical extensions to the current Standard Model, none

of these have been experimentally verified to date. Thus, there is a lot of in-

terest world-wide to look for experimental signatures of new physics, beyond

the Standard Model. For example, the LHC experiment in CERN looks for

these signatures by colliding very high energy protons with one another and

observing the reaction products using large detectors such as ATLAS and

CMS [1].

Complementary to the high-energy collider experiments mentioned above,

one can make precise measurements of decay rates and correlations in atomic

nuclei as probes for new physics. The challenging aspect in such experiments

lies in understanding the structure of nuclei used for the measurements. This

thesis describes one such work. In this work, we measure for the first time a

2+ → 3+ branch in the self-conjugate nucleus 22Na. This transition, from the

first 2+ state to the ground state in 22Na, has never been decisively observed

before. The only reported measurement of the branch was performed using

a 25Mg(p, αγ) reaction, the results of which were never published, except

in an internal laboratory report [2]. This result was used together with an

independent β − γ angular correlation experiment for 22Na beta decay [3]
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to obtain higher-order matrix elements for the decay, which were compared

to Standard Model predictions. The analysis yielded an unexpectedly large

‘induced-tensor’ matrix element for the beta decay, which is forbidden in the

Standard Model. In this work I describe a new measurement of the width of

the 2+
1 → 3+ transition in 22Na in an effort to explain this anomalous result.
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Chapter 2

Weak Interactions and the
Standard Model

It is apparent that Nature creates all its diversity with four known funda-

mental interactions that couple to twelve elementary particles. It has also

been experimentally shown that the elementary particles are made of three

generations of fermions called leptons and quarks (see Fig. 2.1), that in-

teract with each other via the mediation of force carriers called the vector

(spin-1) bosons. The gravitational force is purportedly mediated by a yet-to-

be-discovered quantum of the gauge field called the graviton, electromagnetic

interactions are mediated by photons, strong interactions by gluons and weak

interactions by the Z0 and W± bosons. The latest addition to these particles

is the recently discovered Higgs particle which is a scalar (spin-0) boson and

is responsible for giving the W± and Z0 bosons their mass. This description,

shown in Fig. 2.1 is part of a model called the Standard Model of Particle

Physics, which in its present form excludes gravitational interactions [4].

In the study of nuclear physics, if one neglects gravity, the other three in-

teractions are involved in a significant manner. The short-ranged strong

interactions are responsible for binding the nucleons and quarks together in

nuclei. The weak interactions govern β-decays and transforms the identity of

the particle that decays, while the electromagnetic interactions play a crucial

role in nuclear processes as nuclei have charge. Transitions between quantum

states in nuclei lead to the emission of photons (γ-rays).
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Figure 2.1: Elementary particles and their force carriers.

Radioactivity was first discovered by Becquerel in 1896, which marked the

birth of nuclear physics. It became clear during that time that the decaying

nuclei emitted three types of radiation, α (alpha), β (beta) and γ (gamma)-

rays. In the 1920s it was understood that the β particles were electrons and

the experimental data indicated that instead of being emitted with discrete

energies, the electrons had a continuous energy spectrum (see Fig. 2.2). The

continuous beta spectrum gave rise to two questions:

1. Why was the beta spectrum continuous?

2. Where do the electrons come from?
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Figure 2.2: Energy distribution of electrons emitted in beta-
decays.

The first question was answered by Pauli, who in trying to save fundamental

conservation laws (such as energy, angular momentum, etc), suggested the

existence of a new particle that is very light, neutral and had spin-1/2. He

called it a ‘neutron’ 1. Pauli assumed that this particle is emitted together

with the electron and shared the energy released in the decay. In answering

the second question, Fermi postulated that the electron and ‘neutrino’ 1 are

created in the decay similarly as photons, which are emitted when nuclei

undergo transitions from excited states to lower energy states [30].

There exist three different modes for β-decays in atomic nuclei.

n→ p+ e− + ν̃e (β− decay)

p→ n+ e+ + νe (β+ decay)

p+ e− → n+ νe (electron capture decay)

where the particles νe and ν̃e are the electron neutrino and anti-neutrino

respectively. β+ decays are energetically forbidden for free protons and can

1The neutron was not discovered till later, by Chadwick in 1932. The word ‘neutrino’
was coined by Enrico Fermi in 1934.
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only occur for protons that are bound in nuclei.

The energy released in the β-decay process is given by its Qβ value,

Qβ− = [M(Z,A)−M(Z + 1, A)]c2

Qβ+ = [M(Z,A)−M(Z − 1, A)− 2me]c
2 (2.1)

QEC = [M(Z,A)−M(Z − 1, A)]c2 −B

where M represents atomic masses, A and Z are the mass number and atomic

number respectively and B is the binding energy of the inner shell electrons.

2.1 Classification of nuclear β-decays

Since β-decay is governed by the weak interaction, perturbation theory can

be used to describe the process. The transition rate W from an initial state

to a final state for a given process is determined by the matrix element and

the phase space according to the Fermi’s golden rule [6]

Wα→β =
2π

~
|Mβα|2f(E) , (2.2)

where Mβα is the matrix element that links the initial and final states and

contains all the dynamical information, f(E) is the phase space available

for the decay and contains only the kinematical information. The latter can

formally be obtained by performing the integral,

f(E) =
V 2

(2π~)6

d

dEmax

∫
p2
edpedΩep

2
ν̃dpν̃dΩν̃ , (2.3)

where V is the quantization volume and can be set equal to 1 (since the final

results are independent of the volume). The maximum energy available for

the decay is Emax ' QEC and is constant for specific decays. For massless

neutrinos and a constant Ee, one obtains

Eν̃ = pν̃c , (2.4)
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dpν̃
dEmax

=
1

c

dEν̃
dEmax

=
1

c
, (2.5)

so that the phase space in Eqn. (2.3) can be rewritten as

f(E) =
dΩedΩν̃

(2π~)6c
p2
ep

2
ν̃dpe , (2.6)

for a transition in which the electron has momentum between pe and pe+dpe.

We thus obtain from Eqns. (2.2) and (2.6),

Wα→β =
1

2π3c3~7
|Mβα|2

∫ Emax

mec2
p2
e(Emax − Ee)2dpe . (2.7)

Further integrating Eqn. (2.7) we obtain

Wα→β =
1

2π3c3~7
|Mβα|2E5

max

[ 1

30

]
. (2.8)

In describing the β decays, the normalized electron and neutrino wave func-

tions have the form of plane waves

ψe =
1√
V
e
i~pe·~r

~ ψν =
1√
V
e
i~pν ·~r

~ , (2.9)

where

e
i~pe·~r

~ = 1 +
i~pe · ~r
~

+ · · ·

and e
i~pν ·~r

~ = 1 +
i~pν · ~r
~

+ · · · , (2.10)

with ~pl being the momentum of the emitted lepton. Beta decays can be

classified based on the orbital angular momentum transfered. Since both

the electron and the neutrino have spin-1/2, they can couple to S = 0 or

S = 1 states. If one assumes that the leptons are created at ~r = 0 and that

their wavefunctions do not vary appreciably over the nuclear volume, so that

their de Broglie wavelength λ >> R (nuclear size) and |~p/~| << 1, then

one can safely assume that the leptons carry no orbital angular momentum

(` = 0) [7]. The higher order terms in Eqn. (2.10) can be neglected. This

is called the allowed approximation. Within the allowed approximation, for

7



` ≥ 1, the β-decay is forbidden to the first order. Thus, only the S-value

contributes to the change in angular momentum of the nucleus in the decay.

When ∆J = 0, the β decay is called a Fermi decay and when ∆J = 1 it

is called a Gamow-Teller decay. When the momentum transfered is large

in the decay, the allowed approximation breaks down and ` > 0 terms can

contribute. This is explained in more detail in Chapter 3.

2.2 Dirac equation and γ-matrices

The Schrödinger equation describes the dynamics of subatomic particles in

non-relativistic quantum mechanics. However, in the case of β-decays since

the neutrinos are nearly massless and the mass of the electron (positron)

is much smaller than the energy released (∼ MeV’s), the theory of β-decay

needs to be formulated relativistically. On accounting for spin, the wavefunc-

tions involved are solutions to the Dirac equation, which has the following

general form,

i~
∂ψ

∂t
= βmc2ψ − i~cα · ∇ψ , (2.11)

where β and α are coefficients which are determined by physics conditions.

Dirac obtained the following relations for α and β

α2
i = β2 = 1

{αi, αj} = 0 (2.12)

{αi, β} = 0 .

The anticommutation relations showed that the coefficients αi (i =1, 2, 3)

and β cannot simply be just numbers. They are in fact matrices that operate

on ψ, whose form is shown in Eqn. (2.20). Dirac showed that the smallest

matrices that satisfy the requirement are of dimensionality 4×4. A particular

choice used in describing these matrices is the Dirac-Pauli representation [4]

αi =

(
0 σi
σi 0

)
, β =

(
I 0
0 −I

)
, (2.13)

where I is the unit 2×2 matrix and σi (i =1, 2, 3) are the Pauli matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (2.14)
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Dirac introduced another way of dealing with these matrices by following

notations [8]

γi = βαi and γ0 = β . (2.15)

These are the Dirac γ matrices, which can be written as a four-vector

γµ = (γ0, γi) . (2.16)

The γ matrices satisfy the anticommutation relation

{γµ, γν} = 2gµν , (2.17)

where µ and ν run from 0 to 3, and gµν is the metric tensor

gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (2.18)

The Dirac equation described before can now be represented in a more com-

pact form

i~γµ∂µψ −mcψ = 0 . (2.19)

The ψ is now represented by a four component object called a Dirac spinor

ψ =


ψ1

ψ2

ψ3

ψ4

 , (2.20)

where each component ψi (i= 1, 2, 3, 4) satisfies the relativistic Klein-Gordon

equation, [
∂µ∂

µ +
(mc

~

)2
]
ψi = 0 , (2.21)

with

E2 = p2c2 +m2c4 . (2.22)

9



2.3 Symmetries of the weak interaction

Fermi used the current-current structure of the electromagnetic interaction

to explain the weak interaction, where the electromagnetic Hamiltonian is

Hem = −ejµAµ , (2.23)

where e (the electric charge) is the coupling constant, Aµ is the vector po-

tential and jµ is the electromagnetic current. By analogy, Fermi proposed

that the Hamiltonian interaction for the beta decay has the form [30]

HW = G

∫
d3x(ψ̄pÔψn)(ψ̄eÔψν) , (2.24)

where ψ̄ = ψ†γ0, G is the weak coupling constant called the Fermi constant,

that is determined by the experiment and Ô is the operator that characterizes

the decay and is represented by bilinear covariant γ matrices. It turns out

that one can build 16 linearly independent invariant 4×4 matrices by mul-

tiplying the γ-matrices, which have different transformation properties as

shown in Table 2.1 below, where σµν = i
2
(γµγν − γνγµ) and γ5 = iγ0γ1γ2γ3.

Table 2.1: Possible combinations of bilinear
covariant γ-matrices.

Transformation property Ôi No. of matrices
Scalar S 1 1
Vector V γµ 4

Pseudo-Scalar P γ5 1
Axial-Vector A γµγ5 4

Tensor T σµν 6

In 1956 one of the problems encountered in particle physics was the ‘τ − θ
puzzle’. The τ and θ particles appeared identical in every respect except

in their decays. They decayed to states of opposite parities. This led Lee

and Yang to propose that the weak interaction is not invariant under a par-

ity transformation [9]. They also proposed experimental observables to look

for parity violation in weak decays. The same year, Wu et al. performed

a pioneering experiment to search for parity violation in the weak interac-

tion [10]. They used the beta decay of polarized 60Co (such that the nuclear
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spins pointed in the same directions) nuclei and measured the distribution

of the β particles relative to the parent polarization in the decay,

60Co→60 Ni + e− + ν̃ . (2.25)

The surprising results from this experiment are shown in Fig. 2.3. Since

parity conservation implies that the original and the results of parity trans-

formation (mirror image) cannot be distinguished, the results of the exper-

iment of Wu et al. showed that parity was maximally violated. As shown

in Fig. 2.3 the spin remains unchanged under parity transformation but the

momenta pi of the electrons change sign. This gave direct evidence in favor

of parity violation in the weak interaction.

Figure 2.3: Sketch of the experimental results of Wu et al [10].

This experiment demonstrated one very useful symmetry in beta decays

called helicity. Helicity is defined to be the projection of the spin ~S onto

the direction of momentum, p̂

h =
~S · p̂
|~S||p̂|

. (2.26)
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Over time several experiments have shown that in beta decays only a sin-

gle helicity is involved [11]. Electrons and neutrinos are always emitted

left-handed (with helicity -1), while positrons and antineutrinos are emitted

right-handed (with helicity +1). Based on this experimental evidence, if one

considers a weak interaction that only couples to left-handed particles, one

can project out negative helicity states with the projection operators

P̂− =
1

2
(1− γ5) . (2.27)

There is another symmetry similar to parity that is called charge conjugation.

The charge conjugation operation changes the charge of a particle and leaves

the spin and momentum unchanged. It has the property of converting a

particle to its antiparticle, such that

C|q〉 = | − q〉 . (2.28)

Like parity, charge conjugation is also violated in the weak interaction. When

C is applied to a neutrino (which is left-handed) it gives a left-handed an-

tineutrino, which has not been experimentaly found so far. Thus, antineu-

trinos have the opposite helicity and are right-handed.

In the present scheme of the Standard Model, the experimental evidence

points that the weak interaction excludes all couplings shown in Table. 2.1

except the vector V and the axial-vector A. This is called the V − A law

of weak interactions. The interaction Hamiltonian described in Eqn. (2.24)

can now be written as,

HW =
G√

2

∫
d3x

[
ψ̄pγ

µ(cV + cAγ
5)ψn

]︸ ︷︷ ︸
hadronic current

[
ψ̄eγ

µ(1− γ5)ψν
]︸ ︷︷ ︸

leptonic current

+h.c. , (2.29)

where cV and cA are called the vector and axial vector coupling constants

respectively.

12



Chapter 3

Electromagnetic transitions in
nuclei

Electromagnetic transitions in nuclei manifest themselves via the emission of

γ-radiation and are an essential tool for studying the structure of nuclei and

for testing nuclear models. Below I describe one such very successful model

called the nuclear shell model, before discussing electromagnetic properties

in nuclei.

3.1 Nuclear Shell Model

The nuclear shell model was adopted in analogy to the atomic shell model

in order to describe nuclei. The idea of a shell model involves the filling

of orbits with nucleons in a shell structure with increasing energy within

a potential. The discovery of enhanced binding energies at specific magic

numbers (2, 8, 28, 50, 82, 126, . . . ) provided ample evidence for the nuclear

shell structure. Nuclei with a magic number of neutrons and protons (or

both) exhibited properties of closed shells, analogous to inert gas atoms that

have completely filled electronic shells. The binding energy of nuclei with

magic numbers were experimentally determined to be much greater than the

neighbouring nuclei. It is also experimentally known that the first excited

states in magic nuclei are comparatively much higher in energy [12].

The shell model assumes that nucleons move freely in orbits in nuclei while

13



experiencing an average central potential. In the independent particle shell

model, the nuclear Hamiltonian is given by [13],

Ĥ = Ĥ0 + V̂ , (3.1)

where V̂ is a residual interaction and Ĥ0 is the summed single-particle Hamil-

tonian,

Ĥ0 =
A∑
i=1

ĥi , (3.2)

where ĥi governs the motion of the i’th nucleon and Ĥ0 corresponds to a

system of individual particles moving independently in a potential. A simple

single-particle Hamiltonian can be defined as

ĥi =
p̂2
i

2M
+ U(ri) , (3.3)

where p̂i (=-i~~∇) is the momentum of the nucleon, M is the mass of the

nucleon, U(r) is the central single-particle potential.

Figure 3.1: Single-particle shell model potentials: Harmonic
oscillator and Woods-Saxon.

In order to obtain solutions to the non-relativistic Schrödinger equation for

the Hamiltonian Ĥ, it is natural to start with potentials whose solutions can
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be obtained analytically. Justifiably good starting points to obtain the single

particle wavefunctions are the simple harmonic oscillator and infinite square

well potentials. However the infinite square-well is not a good approximation

for the nuclear potential because it has sharp edges and it requires an infinite

amount of energy to take a nucleon out of the well. The harmonic oscillator

on the other hand does not have a sharp edge, yet it still requires infinite

separation energies [14].

Apart from these two potentials, there is the Woods-Saxon potential that

appears to be more realistic and is given as,

U(r) =
−V0

1 + exp(r −R/a)
, (3.4)

where the mean radius R = 1.25A1/3 fm, the half distance a = 0.524 fm, V0

is of order 50 MeV. The comparison of solutions obtained from the harmonic

oscillator and Wood-Saxon potentials is shown on the left side of Fig. 3.2.

The harmonic oscillator potential has obvious problems as it monotonically

increases with r, unlike how a short-ranged nuclear force should behave.

Though the Wood-Saxon potential seems to be a reasonable potential, it

turns out that it can only reproduce the magic numbers 2, 8 and 20. As

shown in Fig. 3.2, the Wood-Saxon potential suggests that the next magic

number be 40 instead of the experimental known value of 50. The solution to

this discrepancy lies in the spin-orbit coupling [15]. The spin-orbit potential

has the form,

Vso(r)~̀ · ~s , (3.5)

where ~̀ is the orbital angular momentum and ~s is the intrinsic spin of the

nucleon. The ~̀ · ~s factor causes the reordering of the single-particle levels.

The expectation value of ~̀.~s can be obtained from the following expression

[14],

j2 = (~̀+ ~s)2

j2 = `2 + 2~̀ · ~s+ s2

~̀ · ~s =
1

2
(j2 − `2 − s2) . (3.6)
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Hence

〈~̀ · ~s〉 =
1

2
[j(j + 1)− l(l + 1)− s(s+ 1)]~2 . (3.7)

The single-particle energies obtained after the spin-orbit potential was added

to the Wood-Saxon potential are shown on the right-hand side of Fig. 3.2.

Clearly, the addition of the spin-orbit potential reproduces the experimental

magic numbers up to 126 satisfactorily. This is an example of the single-

particle shell model. In the extreme single particle shell model it is assumed

that only the valence (unpaired) nucleon contributes to the properties of a

nucleus. The nucleons occupying filled shells form part of an ‘inert core’.

Figure 3.2: Single-particle shell model for the harmonic os-
cillator, Woods-Saxon with and without spin-orbit potentials.
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3.2 Electromagnetic moments

Consider a system with a continuous charge distribution ρ(~r ′). The elec-

trostatic potential due to this distribution is then given by Coulomb’s law

[16],

V =

∫
ρ(~r ′)

|~r − ~r ′|
d~r ′ , (3.8)

with
1

|~r − ~r ′|
=
[
(x− x′)2 + (y − y′)2 + (z − z′)2

]−1/2
. (3.9)

Eqn. (3.9) can be expanded in a Taylor series for 3 variables,

f(t, u, v) =
∞∑
n=0

1

n!

[
t
∂

∂t
+ u

∂

∂u
+ v

∂

∂v

]n
, (3.10)

with the derivatives calculated at t = 0, u = 0, v = 0. Using Eqn. (3.10) for

the source coordinates (t = x′, etc), Eqn. (3.8) becomes

V =

∫
ρ(~r ′)d~r ′

r
+
xi
∫
x′iρ(~r ′)d~r ′

r3
+

1

2

xixj
∫

(3x′ix
′
j − r′2δij)ρ(~r ′)d~r ′

r5
+ · · · ,
(3.11)

where (x1, x2, x3) ≡ (x, y, z). One can define the terms in Eqn. (3.11) as

follows

q =

∫
ρ(~r ′)d~r ′ , (3.12)

~p =

∫
~r ′ρ(~r ′)d~r ′ , (3.13)

Qij =

∫
(3x′ix

′
j − r′2δij)ρ(~r ′)d~r ′) . (3.14)

The first term q is called the monopole term and is identical to the poten-

tial of a charge placed at the origin. The second term p has the potential

of a dipole and is called the electric dipole moment vector and Qij are the

components of the electric quadrupole moment tensor. Such an expansion

of multipoles continues with the increase of powers in the denominator (oc-

tupole, hexadecapole, etc). We can then rewrite Eqn. (3.11) as,

V =
q

r
+
~p · ~x
r3

+
1

2

Qijxixj
r5

+ · · · . (3.15)
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The above multipole expansion can be used for the Coulomb potential created

by protons in nuclei. To do so we must now consider a quantum system where

the charge density ρ(~r ′) is understood as Ze times the probability density of

finding a proton at point ~r ′. For atomic nuclei, parity conservation demands

that the electric dipole term in Eqn. (3.13) vanishes [17], which leaves the

leading-order charge distribution in the nucleus to arise from the quadrupole

term Qij.

Qij =

∫
(3x′ix

′
j − r′2δij)Zeψ∗(~r ′)ψ(~r ′)d~r ′ . (3.16)

In a similar manner, a localized current distribution ~J(~r ′) gives a vector field

with a vector potential ~A, which can be expressed as a multipole expansion

as well. The monopole term for this case vanishes and so do the other even

powers of r using similar parity conservation arguments as before. The lowest

order term in the expansion is [16]

~A =
~µ× ~r
r3

+ · · · , (3.17)

where ~µ is the magnetic dipole moment given by

~µ =
1

2

∫
~r × ~J(~r ′)d3~r ′. (3.18)

We discuss these two special cases in the sections below.

3.2.1 Electric quadrupole

From Eqn. (3.16), one can drop the charge Ze of the nucleus to give the

quadrupole moment term the dimension of area (which is usually in barns).

If the charge distribution has an axial symmetry with respect to the ẑ-axis,

the components of Eqn. (3.16) can be reduced to one. The quadrupole

moment can be written as

Q =

∫
(3z′2 − r′2)ψ∗(~r ′)ψ(~r ′)d~r ′ . (3.19)

As an example, for an odd Z, even N nucleus, the valence proton wavefunc-

tion, for l = m is,

ψ =
Ul(r)

r
Y l
l (θ, φ) . (3.20)
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Therefore, the maximum observable quadrupole moment is

Q =

∫
U2
l (r)|Y l

l (θ, φ)|2r2(3 cos2 θ − 1) sin θdrdθdφ (3.21)

or

Q = 〈r2〉
∫
|Y l
l (θ, φ)|2(3 cos2 θ − 1) sin θdθdφ , (3.22)

with

Y l
l (θ, φ) = (−1)l

√
2l + 1

4π

1

(2l)!
eilφ(sin θ)l

(2l)!

2ll!
. (3.23)

In general, for any given j, the quadrupole moment in nuclei due to a single

proton can be written as,

Q = −〈r2〉2j − 1

2j + 2
. (3.24)

One can assume that the valence nucleon lies on the surface, therefore 〈r2〉
is the mean square distance of a nucleon from the center of the nucleus,

〈r2〉 = R2 = r2
0A

2/3 . (3.25)

It should be noted that Eqn. (3.24) is for both j = l + 1/2 and j = l − 1/2.

It can also be seen that for j = 1/2, the quadrupole moment Q is zero.

Evidence shows that the electric quadrupole moments of even-even nuclei

with j = 0 are identically zero [16]. These statements can be generalized by

saying that Q = 0 unless j ≥ 1.

3.2.2 Magnetic dipole

In a nucleus, magnetic moments are formed by the orbital motion of the

protons and the intrinsic spin of the nucleons that induces their own mag-

netic moments. Thus, the magnetic dipole moment is then given by the

expectation value of

µz = [lzg
l + szg

s]µN , (3.26)

where µN is the nuclear magneton given by

µN =
e~

2mp

, (3.27)
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with mp the mass of the proton. The gyromagnetic (g) factors for nucleons

are given by

glp = 1 gsp = 5.58

gln = 0 gsn = −3.82 . (3.28)

As mentioned before, in the extreme single-particle shell model, the prop-

erties of odd-A nuclei near closed shells are simply described by the char-

acteristics of the unpaired valence nucleon. One can evaluate the magnetic

moment of such a nucleus as [17],

µ(j = l ± 1/2) =
[
j
(
gl ± (gs − gl)

1

2l + 1

)]
µN . (3.29)

Equations (3.29) are called the Schmidt values and the lines that gives µ as a

function of the angular momentum are called the Schmidt lines. It can also

be seen from equation (3.29) that for each nucleon there will be two Schmidt

lines, corresponding to j = l + 1/2 and j = l − 1/2, respectively [16]. These

are shown in Fig. 3.3.

Figure 3.3: The magnetic moments µ as a function of the an-
gular momentum for odd proton nuclei.
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3.3 Electromagnetic transition probabilities

in nuclei

Just like in β-decays, the electromagnetic transition rate W of an initial state

to a final state for a given process is determined by the matrix element and

the phase space available f(E) using Fermi’s golden rule,

W =
2π

~
|〈φk(~r)|H ′|φ0(~r)〉|2f(E) , (3.30)

where φ0(~r) and φk(~r) are the initial and final wave functions respectively.

The transition probability is related to the width of a state Γ by the following

W = 1/τ (3.31)

Γτ = ~ , (3.32)

where τ is the mean lifetime of the state. In Eqn. (3.30) H ′ is the perturbing

electromagnetic Hamiltonian,

H ′ = −jµAµ , (3.33)

where Aµ = (φ, ~A) is the 4-vector potential and Jµ = (ρ,~j/c) is the current

density. Since H ′ in Eqn. (3.33) is a scalar, only multipoles of the same order

in both ~j and ~A can be coupled together to form an angular momentum zero

operator. For this purpose, one can write the radiation field in terms of

eigenfunctions of angular momentum operators [17],

~A(~r, t) =
∑
λµ

~Aλµ(~r, t) , (3.34)

where the vector functions of spherical tensor ranks (λ, µ) satisfy the relation

~J 2 ~Aλµ(~r, t) = λ(λ+ 1) ~Aλµ(~r, t) ~J0
~Aλµ(~r, t) = µ ~Aλµ(~r, t) . (3.35)

~Aλµ(~r, t) can be expressed in terms of the spherical harmonics Yλµ(θ, φ) al-

lowing two different types of multipoles called the electric multipole (Eλ)
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and magnetic multipole (Mλ), and relate to the spherical harmonics in the

following manner

Aλµ(Eλ,~r) = − i
k
∇× (~r ×∇)(jλ(kr)Yλµ(θ, φ))

Aλµ(Mλ,~r) = (~r ×∇)(jλ(kr)Yλµ(θ, φ)) , (3.36)

where jλ(kr) is a spherical Bessel function. When γ-rays are emitted in elec-

tromagnetic transitions, they carry an orbital angular momentum λ. Since

photons are massless and carry a helicity of ±1 and spin 1, they can only

have two polarization states for a given momentum ~k. The angular mo-

mentum for a transition between initial and final states Ji and Jf has to be

conserved, so that
~Ji = ~λ+ ~Jf . (3.37)

Parity is also conserved similarly

πi = πγπf . (3.38)

The conservation of the angular momentum leads to the selection rule

|Ji − Jf | ≤ λ ≤ Ji + Jf . (3.39)

This relation gives all the possible values of λ. A γ-ray transition of rank

λ = 1 is called a dipole, λ = 2 is called a quadrupole and so on [17].

The parity of the γ-ray in nuclear transition with the electric nature is given

by

π(Eλ) = (−1)λ , (3.40)

while for magnetic transitions, the parity is given by

π(Mλ) = (−1)λ+1 . (3.41)

Using Eqn. (3.36), the multipole parts (λ, µ) of H ′ can be written as

Oλµ(Eλ) = − i(2λ+ 1)!!

ckλ+1(λ+ 1)
~j(~r) · ∇ × (~r ×∇)(jλ(kr)Yλµ(θ, φ))

Oλµ(Mλ) = − (2λ+ 1)!!

ckλ(λ+ 1)
~j(~r) · (~r ×∇)(jλ(kr)Yλµ(θ, φ)) . (3.42)
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The transition probability for multipole λ from an initial state to final state

now takes the form,

W (λ, Ji → Jf ) =
8π(λ+ 1)

λ[(2λ+ 1)!!]2
k2λ+1

~
B(λ, Ji → Jf ) , (3.43)

where the reduced transition probability B(λ, Ji → Jf ) is written in terms

of multipole operator,

B(λ, Ji → Jf ) =
1

2Ji + 1
|〈Jf ||Oλ||Ji〉|2 . (3.44)

One can make simple estimates of electromagnetic transition rates by assum-

ing that the transition occurs from one state to another by a single nucleon

moving from one single-particle orbit to another in a central potential. These

are called the single-particle Wiesskopf estimates of transition probability.

These estimates yield the transition strengths

BW (Eλ) =
1

4π

(
3

λ+ 3

)2

(1.2)2λA2λ/3e2fm2λ

BW (Mλ) =
10

π

(
3

λ+ 3

)2

(1.2)2λ−2A(2λ−2)/3µ2
Nfm

2λ−2 , (3.45)

for electric and magnetic transitions of a given order λ.

3.4 Isospin selection rules in electromagnetic

transitions.

In 1932, after the discovery of the neutron, Werner Heisenberg introduced

the concept of isospin symmetry. In a manner similar to electron spin, he

proposed the proton and the neutron to be different projections of a ‘nucleon’,

such that

|p〉 =

(
1
0

)
and |n〉 =

(
0
1

)
, (3.46)

where |p〉 and |n〉 correspond to different isospin states of the nucleon. This

assumption should not be surprising as both of them are spin-1
2

Fermions

with a mass difference of ≈ 0.1% between them. This concept of isospin
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tells us that they (protons and neutrons) can be considered as identical par-

ticles in the absence of the electromagnetic interaction. They can only be

distinguished by their electromagnetic properties. Thus the nuclear force is

assumed to be charge independent, i.e. it is the same irrespective of whether

a nucleon is a proton or neutron. Since the nucleons cannot be distinguished

from each other purely based on the strong interaction, this symmetry is

called isospin symmetry.

One can define the Pauli isospin matrices for the algebra of isospin [18]

~t =
1

2
~τ and tz =

1

2
τz , (3.47)

where

τx =

(
0 1
1 0

)
, τy =

(
0 −i
i 0

)
, τz =

(
1 0
0 −1

)
, (3.48)

such that the following can be obtained

tz|p〉 =
1

2
τz|p〉

=
1

2
|p〉 ⇒ tz =

1

2
(for proton)

tz|n〉 =
1

2
τz|n〉

= −1

2
|n〉 ⇒ tz = −1

2
. (for neutron)

Since both the proton and neutron are isospin t = 1
2

particles and from the

above expressions it is clear that the they can be distinguished by the third

component of the isospin operator tz (which relates to the nucleon charge).

The isospin of a nucleus is given by the total isospin [19]

T =
A∑
k=1

tk and Tz =
A∑
k=1

tz =
1

2
(Z −N) , (3.49)

where the value of Tz ranges from −T ≤ Tz ≤ T , similar to angular momen-

tum.
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The isospin plays an important role in the electromagnetic transitions. Con-

sider an electric dipole transition. The electric dipole operator is given by

Ô(E1) = e
Z∑
i=1

ẑi

= e
1

2

A∑
k=1

(τzk + 1)zk

=
1

2
e

A∑
k=1

τzkzk + e
1

2

A∑
k=1

zk . (3.50)

The first term in the above is an isovector and the second term is an isoscalar.

The isoscalar term depends on the position of the centre of mass of the whole

nucleus and does not cause transitions in nuclei. The isovector term leads to

the selection rule,

|Ti − Tf | ≤ 1 ≤ Ti + Tf . (3.51)

This implies that ∆T = 1 electromagnetic transitions are allowed, while

∆T = 0 transitions are forbidden assuming isospin is a good quantum num-

ber [18].

Now consider a magnetic dipole. The magnetic moment ~µ, in units of the

nuclear magneton for a nucleus can be written using isospin formalism [18],

Ô(M1) = ~µ =
A∑
k=1

1

2
(τzk + 1)(gp~sk +~lk) +

1

2
(τzk + 1)gn~sk (3.52)

which, for the values in Eqn. (3.28) reduces to

Ô(M1) = ~µ =
1

2
~J + 0.38

A∑
k=1

~sk +
A∑
k=1

τz(k)(4.71~sk +
1

2
~Jk) . (3.53)

The first term clearly does not contribute to transitions between states. The

second term is isoscalar and the last term is isovector. It is obvious from

Eqn.(3.53) that the isoscalar term is much weaker in comparison to the

isovector term. This leads to the isospin selection rule that ∆T = 1 M1

transitions are much stronger than ∆T = 0 M1 transitions.
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3.5 Multipole mixing

If only one multipole contributes to a transition, then a measurement of its

lifetime allows the extraction of the transition matrix element. However, it

is entirely possible, that, even though in general magnetic transition prob-

abilities are much smaller than electric transition probabilities, one could

have transitions where the E(λ + 1) and Mλ strengths are comparable. In

such a situation one can only extract useful nuclear structure information

by making an additional measurement of the multipole mixing ratio in the

transition by measurements of the angular distribution or angular correlation

of the photons. The mixing ratio is defined as

δ2 =
W (E(λ+ 1))

W (Mλ)
. (3.54)

The angular distribution of an emitted γ-ray depends on the initial magnetic

substate mi and the final magnetic substate mf . Consider a dipole transi-

tion from initial state of Ji = 1 to a final state of Jf = 0 as an example.

The magnetic substates can take values mi = -1, 0, 1 and mf = 0. In the

case of mi = 0 → mf = 0, the gamma emission probability varies as sin2θ

(where θ is the angle defined with respect to the quantization axis). For mi

= ±1 → mf = 0 transitions, the angular distribution of the gammas goes

as 1
2
(1+cos2θ). Thus an anisotropy in the gamma-ray angular distribution

can easily be introduced by creating unequal populations of the magnetic

substates.

In general, a multipole mixing ratio can be obtained from the angular distri-

bution of γ-rays. A measured angular distribution for point detectors, with

different multipoles is [20]

W (θ) =
∑

K=even

aKPK(cos θ) , (3.55)

where the aK ’s contain the multipolarity information of the observed γ-ray

and PK(cosθ) are the Legendre polynomials. Eqn. (3.55) can be averaged
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over the face of a finite size detector, so that the response of a detector is

R =

∑
aK
∫
PK(cos θ)εdΩ∫
εdΩ

, (3.56)

where ε is the detection efficiency of the incident gamma-ray. This equation

can be rewritten for cylindrically symmetric detectors with the introduction

of attenuation coefficients, so that the distribution is

R =
∑

K=even

aKQKPK(cos θ) , (3.57)

where QK are the attenuation coefficients due to the detector solid angle.
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Chapter 4

Relation between the weak and
the electromagnetic
interactions

Within the Standard Model of Particle Physics both electromagnetism and

the weak interactions are described in a unified manner as different compo-

nents of the ‘electroweak’ force [21]. In this chapter I describe some aspects

of electroweak symmetry, with experimental examples to motivate the work

done in this thesis.

4.1 Conservation of the weak vector current

It is well established that the electric charge is a conserved quantity, even in

the presence of strongly interacting forces (such as gluon exchanges between

quarks). Another way of stating this conservation law is that the coupling

constant in Eqn. (2.23) is not renormalized in a strongly interacting medium.

For example, within the quark model, the electromagnetic current density is

given by [21]

jEMµ =
2

3
ψ̄uγµψu −

1

3
ψ̄dγµψd + . . . . (4.1)

Analogously, the weak interaction current is given by

jWµ = Vµ + Aµ = ψ̄γµ(1− γ5)ψ , (4.2)
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with the vector part of the interaction Vµ = ψ̄γµψ and the axial vector part

Aµ = ψ̄γµγ
5ψ. If we make a substitution for electric charge in terms of the

Pauli isospin matrices and separate the isoscalar and isovector components

like we did in Section 3.4, then the isovector part of the electromagnetic

current can be written as jEMµ = 1
2

(
ψ̄γµτzψ

)
, up to a constant multiplicative

factor. Analogously, as the charge changes by one unit in a β decay, the

vector part of the weak interaction can be described as Vµ =
(
ψ̄γµτ

±ψ
)
,

where the ψ’s represent quark or nucleon states in Dirac notation. This

similarity between the isovector electromagnetic current and the weak vector

current, together with available experimental data, led Feynman and Gell-

mann to postulate the Conserved Vector Current (CVC) hypothesis [22].

Two direct outcomes of the CVC hypothesis are the following:

1. The vector coupling constant is not renormalized in a strongly interact-

ing medium and is a conserved quantity, similar to the electric charge

as mentioned previously.

2. Analogous β and γ transitions in nuclei have matrix elements that are

proportional to one another [23]

The CVC hypothesis is an integral part of the Standard ‘electroweak’ Model.

In the description of the nuclear β decays, the CVC hypothesis plays an

important role in the studies of pure Fermi decays and in searches for in-

teractions that are not included in the minimal Standard Model. One such

example arises in the hadronic part of the current-current interaction for

nucleon/nuclear β decay. This is described below.

4.2 Form factors in semi-leptonic decays

Unlike the leptons, nucleons are not point particles. Instead they have an

internal structure. They are composed of three quarks which can either

be u,u,d (proton) or u,d,d (neutron). As shown in Fig. 4.1, the quarks

interact with each other via the exchange of gluons in the strong interaction.

The interference of the strong interaction in the β-decay induces additional
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terms in the vector and axial-vector current structure of the hadronic part

of Eqn. (2.29). Consider a simple decay such as a Jπ = 1/2+ → Jπ = 1/2+

neutron decay.

Figure 4.1: A nuclear beta decay is essentially the transfor-
mation of one quark to another via the weak interaction. The
decay occurs in a sea of gluons that strongly interact with the
quarks.

The matrix element of the hadronic weak current, which should be Lorentz

invariant, is allowed to have the induced terms [21],

〈β|hWµ |α〉 = ψ̄(p2)
[
γµ(gV + gAγ5)− i

2M
σµνq

ν(gM + gTγ5)

+
qµ

2M
(gS − gPγ5)

]
ψ(p1) , (4.3)

where ψ̄(p2) and ψ(p1) are Dirac spinors and q is the four-momentum trans-

fered

q = p1 − p2 . (4.4)

In the above,

M =
1

2
(M1 +M2) , (4.5)

where M1 and M2 are the masses of the parent and the daughter respectively.

The leptonic current on the other hand retains its simple form for point
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particles,

〈β|lWµ |α〉 = ψ̄e(pe)γ
µ(1 + γ5)ψν(pν) , (4.6)

where pe and pν are the lepton 4-momenta.

The form factors gV and gA are vector and axial-vector, such that, in the

zero-momentum transfer limit gV (q2 → 0) = cV and gA(q2 → 0) = cA,

mentioned in chapter 3. All the other terms are induced by the strong inter-

action in the decay process. gM is called the ‘weak magnetism’ form factor,

while gT , gS and gP are the induced scalar, tensor and pseudoscalar form

factors respectively, depending on their transformation properties. Holstein

[24] generalized Eqn. (4.3) for any nuclear β decay (Fermi or Gamow-Teller)

for ∆J = 0, ± 1 and ∆π = no, to obtain the induced hadronic form factors

for nuclear transitions,

a = gV c =
√

3gA

b =
√

3gM d =
√

3gT (4.7)

e = gS h =
√

3gP .

On using the CVC hypothesis one can obtain useful information about the

form factors shown above. Direct comparison with the electromagnetic form

factors yields e = gS = 0. Therefore, if the CVC were true there would be no

induced scalar currents. One can ignore the pseudoscalar term as it vanishes

in the non-relativistic limit and we are left with only the a, b, c and d form

factors. In the limit q2 → 0, the first two take the form

a(0) = [(T ∓ Tz)(T ± Tz + 1)]1/2 (4.8)

b(0) = a(0)

(
J + 1

J

)1/2

(µβ − µα) , (4.9)

where µα,β are the nuclear magnetic moments and a(0) is the familiar Fermi

matrix element. The weak magnetism form factor b =
√

3gM is a higher-

order induced term that is permitted in the standard model and manifests

itself when the allowed approximation for β decays breaks down. It plays

a significant role at higher momentum transfers. Murray Gell-Mann [23]
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suggested experiments to measure the weak magnetism in nuclear β decays.

He used the CVC hypothesis to conclude that the weak magnetism effect in

β decays was analogous to the magnetic effects that induce dipole radiation

in electromagnetism. The weak magnetism matrix element can in principle

be extracted from the measured width of an analog M1 transition [23].

Figure 4.2: The CVC test in the A = 12, T = 1 triplet. One
can extract the weak magnetism form factor for the Gamow-
Teller decays via a measurement of the M1 width, ΓM1.

In particular, Gell-Mann suggested measurements in the T = 1, A = 12 triad

(shown in Fig. 4.2) where the decay Q value is rather large, ensuring a large

momentum transfer. He derived the relation between b and ΓM1, assuming

the CVC hypothesis

b =
(ΓM1.6M

2

αE3
γ

)1/2

, (4.10)

where Eγ is the γ-ray energy, α is the fine structure constant and M is the

same as in Eqn. (4.5) .
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4.3 The induced tensor and second-class cur-

rents

The higher-order induced terms in the transition amplitude (4.4) lead to a ` >

0 orbital momentum contribution from the leptonic wavefunction. Thus, the

allowed approximation described in Section 2.1 is no longer valid. The other

induced term apart from the weak magnetism, the tensor term d =
√

3gT

is not included in the weak interaction structure of the standard model on

the basis of certain symmetry arguments. One such important symmetry

is called ‘G-parity’. The G-parity operation is basically the product of a

charge-conjugation operator C and a rotation by 180◦ about the second axis

in isospin space,

G = CeiπTy . (4.11)

G-parity operations are invariant in the strong interaction. Since nuclear β

decays involve strongly interacting quarks, one can split the weak interaction

current into two classes depending on their transformation properties under

G-parity. ‘First-class’ currents are defined under a G-parity transformation

as ones that do not change sign

GVµG
−1 = Vµ

GAµG
−1 = −Aµ , (4.12)

while ‘second-class’ currents behave in an opposite manner and change sign

GVµG
−1 = −Vµ

GAµG
−1 = Aµ . (4.13)

Within the standard (quark) model, the symmetry demands that second-

class currents do not exist [25]. However there is no fundamental reason

why this should be so. Nuclear beta decay form factors can have both first

class and second class components. For transitions within a common isospin

multiplet, in the limit of good isospin symmetry, the d form factor ought to

vanish in the presence of purely first-class currents. Thus, if a large non-zero

d term were measured, this can only be due to a second-class contribution.

33



Since the induced terms under consideration d (induced tensor) and b (weak

magnetism) both lead to ` > 0 contributions in the β decay process, one

can measure angular correlations in β decays to experimentally search for

second-class tensor interactions [21]. One such angular correlation is the

β − γ correlation, which ought to be isotropic in the presence of only the

` = 0 part of the leptonic current. Any anisotropy in the correlation would

be due to both b and d terms in the decay.

4.4 Gammasphere experiment - The β−γ di-

rectional correlation on 22Na decay

The β decay of 22Na offers an attractive possibility to search for second-class

currents due to two reasons:

1. As shown in Fig. 4.3, the β decay is a ∆J = 1, Gamow-Teller type,

with a relatively large log ft value of 7.42 [3].

2. The 22Na nuclide is a readily available source, with T1/2 = 2.6 yr,

making it easy to use experimentally, without an accelerated beam.

Figure 4.3: Decay scheme of 22Na, the energies are in keV.
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Figure 4.4: Gammasphere array at the Lawrence Berkeley Na-
tional Laboratory

The large ft value mentioned above indicates a highly suppressed allowed ma-

trix element which increases the experimental sensitivity to the higher-order

matrix elements, particularly, the weak magnetism and the second-class ten-

sor terms. Therefore, a measured β − γ directional correlation in this decay

could show more of an anisotropy compared to other cases where the allowed

Gamow-Teller matrix element dominates. Taking advantage of these facts, an

experiment was carried out by Bowers et al. [3] at the Lawrence Berkeley Na-

tional Laboratory using Gammasphere, an array of 100 Compton suppressed

Germanium detectors, shown in Fig. 4.4. The purpose of the experiment

was to measure the angular correlation between an emitted β particle (cor-

responding to the 3+ → 2+ β transition) and the 2+ → 0+, Eγ = 1275 keV

photon in the 22Ne daughter. Both these transitions are shown in in Fig. 4.3.

In the experiment, a 6 µCi 22Na source and a 3 mm-thick plastic scintillator

detector were placed in the center of the array over 9 days of beam shut down

period. For each Germanium detector, coincident β − γ events and γ singles
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events were collected over this time period. As shown in Fig. 4.5, the experi-

ment yielded a non-zero β−γ directional coefficient of A22 = 0.53(25)×10−3.

A comparison of this result with previous work is shown in Fig. 4.6. This

result differed significantly from earlier work that was reported with compa-

rable precision.

Figure 4.5: The coincidence/singles ratio as a function a γ
detector angle from [3].

Figure 4.6: Comparison of the Gammasphere result to the pre-
vious measurements [26, 28, 29, 30, 31]. The most precise ear-
lier results are highlighted for comparison.
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Figure 4.7: The MSU experiment spectrum from [2]. The lo-
cation of the 1952 keV gamma-ray is shown.

The measured β − γ directional coefficient relates to the induced form

factors using a parametrization recommended by Firestone et. al. [32]

A22 = (4.4B + 4.4D − 0.6C2)× 10−5 , (4.14)

with B = b/Ac1, D = d/Ac1, C2 = c2/Rc1. In the above, R is the nuclear

radius, A is nucleon number, c1 is the Gamow-Teller coupling gAMGT and

c2 is a higher-order axial-vector term that is a function of q2 [32]. Assuming

that C2 ≈ 0, Bowers et. al. extracted the weak magnetism using an unpub-

lished value of the analog 2+ → 3+ gamma (M1) width from a previous
25Mg(p, αγ) measurement at the Michigan State University (MSU) [2]. The

spectrum from the MSU experiment is shown in Fig. 4.7. Together with their

measured A22 coefficient, Bowers et. al. extract an unexpectedly large second-

class tensor term, D = 26(7) which disagrees with the Standard Model. This

result also disagrees with other experiments that did not find conclusive ev-

idence for second-class currents in A = 12 and A = 20 nuclei [21].
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It is obvious from the above that the weak link in this work is the extraction

of the weak magnetism b/Ac1 from the spectrum shown in Fig. 4.7. The ex-

perimenters at MSU assumed the analog 1952 → 0 keV isovector transition

shown in Fig. 4.3 to be purely M1 and disregarded the small 1952 → 657

keV E2 branch of 0.3% [33]. More importantly, although their experiment

lacked the statistics to make any conclusive claims, the authors of Ref. [2]

concluded that ΓM1 = (3.6 ± 1.7) × 10−4 eV based on their extraction of

(0.61± 0.24)% for the 1952→ 0 keV analog branch.

This thesis describes an independent experiment to obtain the analog M1

branch for 22Na decay in an attempt to explain the anomalously large d term

measured for this particular decay. We describe the experimental procedure

and the analysis in the following chapters.
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Chapter 5

The 21Ne(p, γ) experiment

In our experiment, the 2+
1 state of interest in 22Na was produced using the

21Ne(p, γ) resonance reaction. In this chapter I first briefly explain resonances

in nuclear reactions before getting into the experimental details.

5.1 Resonance reactions

Consider a beam of particles incident on a target. If the incident beam

scatters off the target leaving it in the ground state then the interaction is

referred to as elastic scattering. If the target nucleus changes as a result of

the collision then a nuclear reaction is supposed to have taken place. The

elastic scattering and reaction probabilities are given by their cross sections,

as a sum of partial waves [34]

σel =
∞∑
`=0

σel,` and σre =
∞∑
`=0

σre,` . (5.1)

A cross section uniquely depends on something called a phase shift, such

that, in general for a given orbital angular momentum `

σ =
π

k2
(2`+ 1)

∣∣1− e2iδ`
∣∣2 . (5.2)

The phase shift δ` arises due to the scattering process off a given potential.

The radial solutions to the Schrödinger equation for a quantum mechanical

scattering problem are such that an incoming plane wave is shifted in phase

relative to a free outgoing wave due to the influence of the potential.
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Consider the scattering off a three-dimensional square-well attractive po-

tential. The radial solutions to the Schrödinger equation for this problem

are, for a radius R and depth V0,

uin
` = AeiKr +Be−iKr, r < R (5.3)

uout
` = Ceikr +De−ikr , r > R (5.4)

where K2 = 2m(E + V0)/~2 and k2 = 2mE/~2. The continuity conditions

require that these wave functions and their derivatives are matched at the

boundary, (
uin
`

)
R

=
(
uout
`

)
R

(5.5)(
duin

`

dr

)
R

=

(
duout

`

dr

)
R

. (5.6)

It is convenient to introduce a dimensionless quantity, called the logarithmic

derivative at the boundary,

fl ≡ R

(
1

ul(r)

dul(r)

dr

)
r=R

= R

(
d

dr
lnul(r)

)
r=R

, (5.7)

which helps one to rewrite the continuity conditions as,

fl(u
in
` ) = fl(u

out
` ) . (5.8)

In terms of the phase shift, the total outgoing wavefunction can be written

as

uout
` (r) =

i

2kr

(
e−ikr − e2iδ`eikr

)
. (5.9)

For ` = 0 (s-wave) scattering, since the cross section is determined by the

phase shift δ0, one can find the relation between δ0 and f0 and express the

cross section in terms of f0. Substituting Eqn. (5.9) into (5.7) and solving

for e2iδ0 one gets,

e2iδ0 =
f0 + ikR

f0 − ikR
e2ikR. (5.10)
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Further substituting in Eqn. (5.2), we get the cross section for s-wave elastic

scattering

σel =
π

k2

∣∣∣∣∣∣∣∣−
2ikR

f0 − ikR︸ ︷︷ ︸
Ares

+ e2ikR − 1︸ ︷︷ ︸
Apot

∣∣∣∣∣∣∣∣
2

(5.11)

with a ‘resonant’ scattering amplitude (Ares) and a potential scattering am-

plitude (Apot). The resonant term corresponds to a large amplitude in the

cross section at the interior of the potential well, so that the slope of the

radial wave function vanishes at r = R.

Now, consider a s-wave scattering such that there is a phase difference of ζ

between the incoming (e−iKr) and outgoing (eiKr) waves. With the assump-

tion that that the amplitude of the incoming wave, e−iKr is A = Be2iζe2q

(where ζ and q are real numbers), one can reduce Eqn. (5.3) to the following

form

uin = 2Be(iζ−q) cos(Kr + ζ + iq) , (5.12)

where the logarithmic derivative for this problem is

f0 = −KR tan(KR + ζ + iq) . (5.13)

The idea is to express the cross sections near a single resonance in terms

of the measurable quantities. One can define resonance energies, Er by the

condition that f0 vanishes at these energies to give a large cross section

f0(Er, q) = −KR tan(KR + ζ + iq) = 0 . (5.14)

f0(Er, q) can be Taylor expanded about the resonance Er, with q = 0 to give

f0 ' f0(Er, q) + (E − Er)
(
∂f0

∂E

)
Er,q=0

+ q

(
∂f0

∂q

)
Er,q=0

· · · , (5.15)

so that

f0 ' (E − Er)
(
∂f0

∂E

)
Er,q=0

− iqKR . (5.16)
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Substitution of Eqn. (5.16) into Eqn. (5.11) leads to the following definitions

[34, 35]

Γa = − 2kR

(∂f0/∂E)Er,q=0

(particle width)

Γr = − 2qKR

(∂f0/∂E)Er,q=0

(reaction width)

Γ = Γa + Γr , (total width)

so that the total cross section is (from Eqn. (5.11)),

σ =
π

k2

∣∣∣∣∣∣∣∣∣
iΓa

(E − Er) + iΓ/2︸ ︷︷ ︸
Ares

+ e2ikR − 1︸ ︷︷ ︸
Apot

∣∣∣∣∣∣∣∣∣
2

, (5.17)

with the resonant component of the cross section being

σ =
π

k2

Γ2
a

(E − Er)2 + Γ2/4
. (5.18)

This is called the Breit-Wigner formula for resonant elastic scattering of spin-

less particles.

In general, if we consider the spin of the particles involved in a reaction

and the total angular momentum of the resonant state which has a decay

width Γb, the resonant cross section is given by,

σ =
π

k2

ΓaΓb
(E − Er)2 + Γ2/4

· (2J + 1)

(2J1 + 1)(2J2 + 1)
, (5.19)

where J is the angular momentum of the resonant state, J1 and J2 are the

spins of the projectile and target nuclei respectively. Following the argu-

ments stated before, the cross section for this particular reaction channel is

enhanced when the incident beam energy is close to the resonance energy Er.

5.2 Target preparation and Experimental fa-

cility

The selectivity and large cross section of producing particular states using

resonance reactions was used as a motivation to produce the first 2+ state
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in 22Na using the 21Ne(p, γ) reaction. However, since the 21Ne nuclide is

naturally available a gas and has low abundance (0.27%), it was decided to

use an implanted 21Ne target. The target was prepared at the Center for

Experimental Nuclear Physics and Astrophysics (CENPA) at the University

of Washington in Seattle, USA. A 30 keV, 50 pnA 21Ne++ beam from a mod-

ified Direct Extraction Ion Source (DEIS) at this facility was mass separated

through a 90◦ bending magnet and implanted on to a 1-mm-thick 99.9% pure

Tantalum backing over a period of several days. The beam was rastered us-

ing magnetic steerers, so that a uniform implantation region of a diameter

1 cm produced the required target with a thickness of ≈ 13 µg/cm2. The ion

source is shown in Fig. 5.3. The tandem facility at the University of Wash-

ington (shown in Fig. 5.1) was also modified so that the accelerator could be

used as a single-ended machine with a positive (RF) ion-source placed at the

terminal. This ensured a high proton beam intensity at low energies.

Figure 5.1: The tandem accelerator facility at CENPA.

43



Figure 5.2: The 30◦ beam line at CENPA.
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Figure 5.3: CENPA Tandem accelerator
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For this experiment it was decided to use a resonance at proton energy

Ep = 1113 keV, which almost exclusively produces a state in 22Na at 7800

keV [36].

Figure 5.4: The 21Ne(p, γ) resonance and gamma-rays of inter-
est. Energies are in keV. The 1952 → 0 branch is not listed in
the NNDC database [33].

As shown in Fig. 5.4, this state feeds the 2+
1 state of interest with a branching

ratio of 80% [36], which further decays predominantly to the 1+ state at 583

keV, thereby emitting a gamma-ray at energy Eγ = 1369 keV [33].

Figure 5.5: Schematic of the target station at the 30◦ beam
line at CENPA.
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The target was mounted on the 30◦ beam line at CENPA which is shown in

Fig. 5.2. A schematic of the target chamber is shown in Fig. 5.5. A 60µA

proton beam with energy Ep = 1113 keV was sent through a set of collimators

with electrical suppression (to prevent delta electrons) and bombarded the
21Ne implanted Tantalum backing that had water cooling on its back. The

cooling minimized damage to the target due to the power deposited by the

high intensity beam. Furthermore, the proton beam was rastered over an area

of ≈ 0.2 cm2 using an alternating magnetic field to prevent local heating

at the beam spot. Three detectors were used to register the gamma-rays

that were emitted from the reaction. One large 10′′ × 15′′ NaI detector was

used to collect coincidences by gating on the 5848 keV gamma-ray from

the 7800 → 1952 keV transition, while two 100% N-type Canberra HPGe

detectors were used to collect gamma-ray information from the subsequent

transitions. The data were collected with the detectors in two configurations

shown in Figs. 5.6 and 5.7.

Figure 5.6: Schematic setup
for the detector geometry in
the close packed configuration. Figure 5.7: Schematic of detector con-

figuration for the second data set.

In the first configuration, the Germanium detectors were close-packed, for a

branching ratio measurement. In the second configuration, the Germanium
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detetors were moved away from the target, with one detector kept fixed at

90◦ to the beam, while the other was used to take data at different angles

to get an angular distribution. In the former, 2.54-cm-thick lead bricks were

placed in front of the HPGe detectors, while in the second, 1.2-cm-thick lead

bricks were placed on the face of the detectors. This ensured that there was

negligible summing of the 1952 → 583 → 0 keV cascades in the detectors.

5.3 Data Acquisition

The signal from the detectors were shaped using a previously set up data

acquisition system described in Ref. [37]. The HPGe signals were amplified

and sent to a ORTEC 413A ADC with a FERA read-out for digitization on

a computer via a CAMAC crate. A java based data acquisition called JAM

was used for processing and online analysis of the data [38]. The signals

from the Germanium detectors and the NaI detector were further used as

start-stop inputs to ORTEC566 Time-to-Amplitude convertors (TAC’s) to

collect coincidences. γ-ray singles data were also registered simultaneously.
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Chapter 6

Analysis and Monte Carlo
Simulations

During the 21Ne(p, γ) experiment we took data for 3 days in the close-packed

configuration and for roughly 7 days with the detectors further away to obtain

angular distribution information. In this chapter I describe the procedure

used to analyze these data.

6.1 Energy calibration

The energy calibration for the detectors was performed using 56Co and 60Co

gamma-ray sources. The activity of the 60Co source (T1/2 = 5.27 yr) was

known from the manufacturer to be A0 = 1.812 kBq on December 15, 2005.

This source emitted two γ-rays with well known energies Eγ1 = 1173.228 keV

and Eγ2 = 1332.492 keV. The 56Co source of unknown activity emitted well

known γ-rays in the energy range 846 ≤ Eγ ≤ 3451 keV. To perform the

energy calibration, the peaks in all γ-spectra were fit using a function that

included a Gaussian

G(x) =
1√

2πσ2
exp(
−(x− µ)2

2σ2
) , (6.1)

and a lineshape of the form

T (x, µ) =
1

2l
exp
[(x− µ)

l
+

1

2

(σ
l

)]
erfc

[ 1√
2

((x− µ)

σ
+
σ

l

)]
, (6.2)
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which arises from a convolution of a Gaussian with a low energy exponen-

tial tail. In the above, erfc is the complementary error function, l is the

decay length of the exponential tail, µ is the peak centroid and σ, the stan-

dard deviation is related to the full-width half-maximum (FWHM) of a pure

Gaussian, such that FWHM = 2
√

2ln2σ. The fitted centroids were used for

an energy calibration using a linear regression [39],

Eγ(i) = a0 + a1µ(i) , (6.3)

where µ(i) represents the fitted centroid of a ith gamma-ray up to 3.2 MeV.

The regression yielded the following calibration coefficients shown in the table

below. The calibrated energy spectra of both sources from HPGe1 are shown

in Fig. 6.1. A sample fit and its residuals are shown in Fig. 6.2.

Table 6.1: Energy calibration coefficients for
the three detectors. The uncertainties in the
coefficients are not shown

Detector∗ a0 a1

HPGe 1 10.07 1.08193
HPGe 2 7.29 1.08471

NaI 87.1 1.331573
∗HPGe1 was used as the 0◦ detector for all the measurements described in

this chapter.

6.2 Dead time corrections (for efficiency cal-

ibration).

The next step in the analysis was an efficiency calibration of the detectors.

For an accurate calibration dead time corrections had to be performed. The

concept of dead time and its correction procedure is explained below.

The events from the detectors are recorded as pulses in the data acquisi-

tion system. When the pulses get analyzed by the data acquisition system,

successively registered events are separated by a minimum time called the
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Figure 6.1: Energy calibrated energy γ-ray singles spectra for
the 56Co and 60Co sources from one of the detectors. Only
the prominent peaks from both sources and room background
are labeled. The pulser peak is outside the range in these
histograms and not shown.

Figure 6.2: A sample fit to the 1173 keV peak.
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‘dead time’ that is required to process the signal from the first pulse. There-

fore while analyzing data from detector systems, one has to take into account

the effect of dead time loss for absolute measurements. For a given true event

rate n, the recorded rate m in a detection system is given by,

m = n(1−mτ) , (6.4)

where τ is the non-extendible dead time for each event. The product mτ

gives the fraction of the events lost due to the dead time of the system.

It should be noted here that for the 21Ne(p, γ) experiment, our data acquisi-

tion was triggering at relatively low rates (maximum of ∼ 400 Hz) ensuring

a low effective dead time. Nonetheless, in order to determine the efficiencies

of the HPGe detectors accurately, we performed dead time corrections. For

these corrections, a Berkeley Nucleonics high-precision pulser was used to

send signals at a rate of 100 Hz to a scalar unit on the CAMAC crate. This

signal was split and simultaneously sent into the preamplifier input of one

Germanium detector. The ratio of the total number of pulser counts regis-

tered by the scalar to the total pulser counts in the HPGe detector spectrum

gave us the fraction of events lost due to the dead time in each run,

fd = 1− Nd

Ns

, (6.5)

where Ns and Nd are the pulser counts from the scalar and detector spectrum

respectively. Note that Eqn. (6.5) is similar to the product mτ in Eqn. (6.4).

The fraction Nd/Ns is the fraction of counts registered in the ‘live time’,

denoted by fl. Using the fitted 56Co and 60Co peaks, together with fl, the

dead-time-corrected photo peak areas were calculated using the ratio

Nγ(i) =
Npeak(i)

fl
. (6.6)

6.3 Efficiency calibration

The dead-time-corrected peak areas were used to get the efficiencies of the

Germanium detectors in different configurations. Using the data from the

52



60Co source, we obtained the absolute efficiencies of the detectors using the

relation

εabsγ (i) =
Nγ(i)

AIγ(i)t
, (6.7)

where A is the activity of the 60Co source on the day of calibration, Iγ is the

intensity of the γ-ray and t is the run time. The absolute efficiencies of the

detectors for the 60Co gamma rays are shown in Tables. 6.2 and 6.3. Since

the absolute activity of the 56Co source was not known, only the relative

efficiencies of the detectors were obtained for the 56Co gamma rays using the

formula

εRelγ (i) =
Nγ(i)

Iγ(i)
, (6.8)

where Iγ(i) are intensities of the γ-rays from the NNDC website [33]. These

relative efficiencies were fit to a polynomial of the form

lnεγfit(i) =
3∑
j=0

aj[lnEγ(i)]
j , (6.9)

where Eγ(i) represents the energy of the ith γ-ray and the aj’s are the coef-

ficients of the polynomial and are free parameters. One can then define, for

N data points

χ2 =
N∑
i=1

1

σ2
i

[
lnεγ(i)− lnεγfit(i)

]2
. (6.10)

This χ2 was minimized with respect to each parameter, such at

∂

∂aj
χ2 = 0 , (6.11)

yielding a system of four linear equations. These were solved to obtain the

coefficients aj using the Gauss-Jordan elimination method [39, 40]. The fits

to the relative efficiencies were finally normalized to absolute values using

the 60Co data and an independent least squares fitting algorithm, which

converted the εRelγ (i) to εAbsγ (i) for gamma ray energies up to 3.2 MeV. The

absolute normalized efficiencies for the 56Co lines are also shown in Tables

6.2 and 6.3. The quoted uncertainties are purely statistical. An estimation

of the systematic effects by moving the source around, showed no significant

effect. The fits are shown in the figures that follow.
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Figure 6.3: Experimentally determined efficiencies for HPGe1
at 0◦ in the close-packed configuration. The 60Co values are
highlighted in red.

Figure 6.4: Experimentally determined efficiencies for HPGe2
at 119◦ in the close-packed configuration. The 60Co values are
highlighted in red.
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Figure 6.5: Experimentally determined efficiencies for HPGe1
at 0◦ and 25◦ in the second configuration.

Figure 6.6: Experimentally determined efficiencies for HPGe1
at 55◦ and 73◦ in the second configuration.
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Figure 6.7: Experimentally determined efficiencies for HPGe2
at 90◦ in the second configuration.

Once the experimental γ-ray detection efficiencies were obtained, we pro-

ceeded to perform several Monte Carlo simulations for the following reasons:

1. To correct for the attenuation of the gamma-rays due to the water

cooling. This is because the water cooling was not on while taking

calibration data.

2. To obtain corrections due to photon summing and scattering for a pre-

cise branching ratio measurement.

3. To study the effects of source distribution and γ-ray multipolarity for

our measurement.

4. To secure our understanding of the detector geometry (particularly the

distance and the angle relative to the beam spot) rather than relying on

mechanical measurements which were prone to errors in our ‘table-top’

arrangement.

In particular, it should be noted with regard to the final point above, as

it was not planned beforehand to take the angular distribution data, the

second data set was obtained using a make-shift arrangement of a table and a
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support structure on wheels that allowed us to rotate one germanium detector

(HPGe1) about the beam axis. Therefore, a crucial step in the analysis was

to precisely understand the geometry, particularly of the second setup using

Monte Carlo simulations. The crystal specifications that were supplied by

the manufacturer were already stringently tested and determined previously

using a rigorous method that employed Monte Carlo simulations together

with source data [41]. We performed several additional simulations similarly

to optimize our knowledge of the detector geometry. These simulations are

described below.

6.4 PENELOPE Simulations

PENELOPE (Penetration and ENErgy LOss of Positrons and Electrons) is

a radiation transport FORTRAN computer code that is used to perform

Monte Carlo simulations of electron, positron and photon transport in mate-

rials over a large energy range [42]. The PENELOPE package was employed

in this work because of its efficiency and accuracy to model radiation trans-

port problems [43, 44].

For the simulations, the detectors and target-ladder arrangement were con-

structed in a solid geometry model as objects that are defined by the vol-

ume enclosed between a set of quadric surfaces. Figures 6.8 and 6.9 show a

3-dimensional view of the experimental set up built for the simulations. Fig-

ure 6.10 shows a zoomed-in picture of the copper target holder and aluminum

water cooling jacket.
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Figure 6.8: Close-pack configuration: Cross sectional view of
two Ge detectors and the NaI detector. The target holder with
the Al water cooling jacket are shown.

Figure 6.9: One configuration used for angular distribution
measurement. Note that the NaI detector was moved further
away for this measurement and is not visible in this picture.
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Figure 6.10: The target holder and water cooling jacket in the
model.

To optimize the positions of the HPGe detectors, starting with the ‘nominal’

measured values, several combinations of detector angle and distance were

used to generate histograms for the 56Co and 60Co gamma-rays from the

simulations. In the simulations, monoenergetic γ-rays were emitted isotrop-

ically from the center of the Tantalum foil (shown in Figure 6.10) in the

energy range 846< Eγ <3273 keV. The simulated efficiencies were then com-

pared to the experimental values shown in Tables 6.2 and 6.3. We defined a

χ2 =
(
εsim(i)−εdata(i)

∆εdata(i)

)2

to obtain the optimal parameters for a given simula-

tion. Several simulations we performed with small variations in the values of

the detector distance and angle to obtain the optimal geometry that yielded

the minimum χ2 mentioned above. A comparison of the simulated results

for the ‘best geometries’ with the experimental curves is shown in the figures

and tables below 1.

1In our simulations, we used 106 photon emissions for each gamma ray in the close-
packed geometry and 16 × 106 photons for each gamma ray in the ‘angular distribution’
geometry.
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Table 6.4: Comparison between the measured
and simulation-determined parameters for the
close-packed configuration.

Nominal Target-detector θdetector inferred Target-detector distance
θdetector distance (cm) from simulations from simulations (cm)

0◦ 2.7 0◦ 2.76
119◦ 9.3 119◦ 9.27

Table 6.5: Comparison between the measured
and simulation-determined parameters for the
angular distribution measurement.

Nominal Target-detector θdetector inferred Target-detector distance
θdetector distance (cm) from simulations∗ from simulations (cm)

0◦ 18.2 2◦ 18.66
-25◦ 18.0 -21◦ 18.46
-55◦ 17.8 -51◦ 17.78
-73◦ 17.5 -68.3◦ 17.28
90◦ 17.5 90◦ 16.73

∗ We make reference to these angles in the subsequent tables. We also note
that the efficiencies did not change significantly with small variations

in θdetector.

Figure 6.11: Comparison of the experimental efficiency curve
with the simulated efficiencies for the 0◦ detector in the close-
packed configuration.
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Figure 6.12: Comparison of the experimental efficiency curve
with the simulated efficiencies for the 119◦ detector in the close-
packed configuration.

Figure 6.13: Comparison of the experimental efficiency curve
with the simulated efficiencies for HPGe1 at 0◦ and 25◦ in the
second configuration.

63



Figure 6.14: Comparison of the experimental efficiency curve
with the simulated efficiencies for HPGe1 at 55◦ and 73◦ in the
second configuration.

Figure 6.15: Comparison of the experimental efficiency curve
with the simulated efficiencies for HPGe2 at 90◦ in the second
configuration.
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The results of our simulations showed that for many of the simulations, based

on our χ2 minimization test, the measured detector distances (angles) did

not agree with the models (see Tables 6.4 and 6.5). For the remainder of

the analysis we made the assumption that the detector angles and distances

extracted from the simulations were a close approximation to the actual

values. We then proceeded to run PENELOPE simulations for the 21Ne(p, γ)

gamma-rays. These are described below.

6.5 21Ne(p, γ) simulations

Since the photons from the 21Ne(p, γ) experiment were emitted from a recoil-

ing nucleus, the gamma energies in the laboratory frame would be Doppler-

shifted depending on the angle subtended by the HPGe detector. In the

non-relativistic limit, Doppler-shifted gamma-ray energy would be

Eγ = E0
γ

(
1 +

v

c
cos θ

)
, (6.12)

where E0
γ is the unshifted γ-ray energy (for a source at rest), θ is the angle

between the recoiling nucleus and the detector and v is the magnitude of the

recoil velocity.

For this experiment, the γ-rays of interest had small Doppler shifts (of the or-

der 0-4 keV, depending on the detector angle) due to the small recoil velocity

of the 22Na nucleus
(
v
c
' 10−3

)
. Nonetheless, we used the Doppler shifted

energies to run simulations and obtain the efficiencies of the detectors for

the three gamma-rays of interest from 21Ne(p.γ), shown in Figure 4.3. The

simulation procedure is described below.

6.5.1 Monte Carlo simulations for a distributed source
of γ-rays from 21Ne(p, γ).

The transformation method

One important aspect in Monte Carlo simulations is the use of random num-

bers. Random variables are generated statistically from a normalized uniform
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probability density function (pdf) defined over some range. For example,

p(y)dy =

{
1 for 0 ≤ y ≤ 1,

0 otherwise
(6.13)

is a pdf that produces uniform random numbers (deviates) in the range

y ε [0, 1], such that ∫ ∞
−∞

p(y)dy = 1 . (6.14)

For a given uniform random deviate x (defined in a certain range), if there

exists a prescribed function y(x), then the fundamental transformation law

of probabilities demands that the probability distribution of x and y are the

same [40],

|p(y)dy| = |p(x)dx| (6.15)

or

p(y) = p(x)

∣∣∣∣dxdy
∣∣∣∣ . (6.16)

Further, if one defines a cumulative density function (cdf)

x = F (y) =

∫ y

−∞
p(y′)dy′ , (6.17)

which ranges from 0 to 1, then it can easily be seen from Eqn. (6.16) that

p(x)=1 is the pdf of x for 0 ≤ x ≤ 1. By inspection of this result, together

with the pdf defined in Eqn. (6.13), one can then easily generate random

variables from a set of uniform deviates between 0 and 1 that follow a required

probability distribution. More explicitly, for a given pdf p(y) one can obtain

for 0 ≤ x ≤ 1 a set of random variables

y(x) = F−1(x), (6.18)

which follow the required pdf (if the inverse of the cdf exists). This approach

is called the inverse transformation method to generate random variables for

Monte Carlo simulations.
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Randomizing the source position

In the simulations described till now the source of the calibration γ-rays was

assumed to be a point, located at the center of the Tantalum foil shown in

Fig. 6.10. However, since the 21Ne target was made by implanting the ions

over a circular spot of diameter 1.0 cm and the incident proton beam was

rastered over a target diameter of 5 mm, the source of gammas from the
21Ne(p, γ) reaction was distributed over this circular region 2. We modified

the simulation program in PENELOPE to account for the extended distri-

bution of the source by generating uniformly distributed positions for each

emitted photon within a circle of radius 2.5 mm on the Ta backing. On

using polar coordinates, one would think this requires the generation of a

random ‘radius’ variable r between 0 and 2.5 mm and a random polar angle

θ, between 0 and 2π. However, it is known that such an approach does not

generate uniformly distributed random positions on the surface of a circle

(see Fig. 6.16). This is understandable since the area element in polar coor-

dinates is dA = rdrdθ. Such an approach would lead to a clustering of points

close to the origin as shown from the results of our simulations in Fig. 6.16.

We therefore use the inverse transform method to generate these points of

origin for the photons correctly. We define a probability density function

f(r) that ought to be proportional to r (given the area element mentioned

above) with a normalization constant N∫ R

0

f(r)dr = 1 ⇒
∫ R

0

N · rdr = 1 ⇒ N =
2

R2

so that

f(r) =
2

R2
r . (6.19)

We then calculate the cumulative density function,

F (r) =

∫ r

0

f(r)dr =
r2

R2
. (6.20)

By calculating the inverse of the cumulative density function one is able to

get randomly distributed values of r on a circle of radius R

r = R
√
U , (6.21)

2The effect of the implantation depth is assumed to be negligible for this analysis.
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where U is a set of uniformly distributed random numbers between 0 and 1.

Similarly, a random θ is generated between 0 and 2π

θ = U · 2π . (6.22)

This method yields uniformly distributed points within a circle of radius R,

which in our case is 2.5 mm.

Figure 6.16: Area el-
ement in polar coordi-
nates.

Figure 6.17: Cluster-
ing of points close to
the origin obtained by
the wrong simulation
approach.

Figure 6.18: The cor-
rect distribution ob-
tained correctly by the
inverse transformation
method.

The results of our simulations for 21Ne(p, γ) photons are shown in the Ta-

bles and figures below 3. It is apparent that the water cooling significantly

attenuates all three gamma-rays for detectors placed at 0◦ and 25◦.

Table 6.6: Comparison of source calibration
efficiencies with the simulated efficiencies.

Eγ = 1295 keV
Detector εγ × 103 from εγ × 103

angle source calibration from simulation
0◦ 2.187(223) 2.047(26)

119◦ 1.178(39) 1.179(17)

3We ran 4×106 primary showers for the close-packed configuration and 16×106 showers
for the angular-distribution configuration.
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Table 6.7: Comparison of source calibration
efficiencies with the simulated efficiencies.

Eγ = 1369 keV
Detector εγ × 103 from εγ × 103

angle source calibration from simulation
0◦ 2.254(136) 2.098(23)

119◦ 1.206(32) 1.238(18)

Table 6.8: Comparison of source calibration
efficiencies with the simulated efficiencies.

Eγ = 1952 keV
Detector εγ × 103 from εγ × 103

angle source calibration from simulation
0◦ 2.283(502) 2.075.(23)

119◦ 1.236(71) 1.256(18)

Table 6.9: Comparison of source calibration
efficiencies with the simulated efficiencies.

Eγ = 1295 keV
Detector εγ × 103 from εγ × 103

angle source calibration from simulation
0◦ 0.856(20) 0.802(7)
−21◦ 0.861(19) 0.799(7)
−51◦ 0.673(11) 0.686(6)
−68.3◦ 0.503(8) 0.503(5)

90◦ 0.714(21) 0.708(6)

Table 6.10: Comparison of source calibration
efficiencies with the simulated efficiencies.

Eγ = 1369 keV
Detector εγ × 103 from εγ × 103

angle source calibration from simulation
0◦ 0.853(12) 0.798(7)
−21◦ 0.857(11) 0.791(7)
−51◦ 0.676(7) 0.689(6)
−68.3◦ 0.506(6) 0.508(5)

90◦ 0.714(12) 0.713(6)
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Table 6.11: Comparison of source calibration
efficiencies with the simulated efficiencies.

Eγ = 1952 keV
Detector εγ × 103 from εγ × 103

angle source calibration from simulation
0◦ 0.761(39) 0.715(6)
−21◦ 0.763(36) 0.725(6)
−51◦ 0.630(22) 0.628(6)
−68.3◦ 0.500(19) 0.496(5)

90◦ 0.658(41) 0.649(6)

Figure 6.19: Comparison of experimental efficiency curve with
results from the simulation of 21Ne(p, γ) gamma rays for
HPGe1 in close-packed configuration.
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Figure 6.20: Comparison of experimental efficiency curve with
results from the simulation of 21Ne(p, γ) gamma rays for
HPGe2 in close-packed configuration.

Figure 6.21: Comparison of experimental efficiency curve with
results from the simulation of 21Ne(p, γ) gamma rays for
HPGe1 in the ‘angular distribution’ configuration.
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Figure 6.22: Comparison of experimental efficiency curve with
results from the simulation of 21Ne(p, γ) gamma rays for
HPGe2 in the ‘angular distribution’ configuration.

Figure 6.23: Comparison of experimental efficiency curve with
results from the simulation of 21Ne(p, γ) gamma rays for
HPGe2 in the ‘angular distribution’ configuration.
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Simulations to check dependence on multipolarity

Referring to Fig. 4.3, the 1952 → 657 keV transition is of pure E2 isoscalar

nature emitting a 1295 keV gamma-ray. On the other hand, the other two

gammas of interest from the 1952 → 583 keV (Eγ = 1369 keV) and the

1952 → 0 keV transitions (Eγ = 1952 keV) are mixed isovector transitions

with potentially strong M1 character. Purely on the basis of the isospin

selection rules described in Section 3.4, one can assume that the E2 ma-

trix elements in the latter transitions are strongly suppressed. An angular

correlation measurement performed during the late 1960’s supports this as-

sumption for the 1952→ 583 keV transition where the authors measured the

E2/M1 mixing ratio to be (0.04±0.06) [45]. We defer a discussion on this

measurement to the next chapter. The close-packed configuration should in

principle wash out all multipolarity dependent angular distribution effects for

a branching ratio measurement. We performed further Monte Carlo simula-

tions to check if this is the case. The angular distribution of the gamma-rays

with respect to the beam axis should have a form

Wd(θ) = 1 + P2(cos θ) , (6.23)

for a pure dipole, and

Wq(θ) = 1 + P2(cos θ) + P4(cos θ) , (6.24)

for a quadrupole transition.

For our PENELOPE simulations we generated gamma-rays with both these

distributions for the three gamma-rays of interest, with the detectors in the

close-packed configuration. This was performed using the Von Neumann’s

acceptance-rejection method described below. The locations of the gammas

from the target were randomly generated as mentioned previously.

The acceptance - rejection method

The acceptance-rejection method is another technique to generate random

variables whose pdf is known. But this method can be computationally ex-

pensive and is based on the fact that the area under a pdf p(x) corresponds
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to the probability of generating a random number x in that range. In partic-

ular, one can save computational time by using a comparison function f(x)

which has a finite area and lies above the curve p(x). One can then randomly

choose a point in two dimensions that is uniformly distributed in the area

under f(x). Whenever this randomly selected point lies inside the area under

the original pdf p(x) it is accepted and when it lies outside it is rejected. This

is called the acceptance-rejection method [40] and is geometrically shown in

Fig. 6.24

Figure 6.24: Rejection method for generating a random num-
ber x0 that is only accepted if it falls under the probability
distribution p(x) curve and rejected otherwise. Figure taken
from [40].
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Figure 6.25: Histogrammed normalized pdf of Wd(θ) generated
for 106 events using the acceptance-rejection method.

Figure 6.26: Histogrammed normalized pdf of Wq(θ) generated
for 106 events using the acceptance-rejection method.
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In order to generate gamma-rays that followed a specific angular distribution

we added a subroutine to the PENELOPE code to generate the photon di-

rections according to the pdfs shown in Figs. 6.25 and 6.26. Our simulations

show that roughly 50% of the events were rejected for these pdfs thereby dou-

bling our simulation time. The results of our simulations shown in Tables

6.12 and 6.13 show that the angular distributions did not have significant

effect for the efficiencies of the detectors in the close-packed configuration.

Table 6.12: HPGe1
Eγ εγ × 103 εγ × 103 εγ × 103

keV (isotropic) (dipole) (quadrupole)
1295 2.047(26) 2.073(23) 2.061(23)
1369 2.098(23) 2.077(23) 2.053(23)
1952 2.075(23) 2.148(23) 2.083(23)

Table 6.13: HPGe2
Eγ εγ × 103 εγ × 103 εγ × 103

keV (isotropic) (dipole) (quadrupole)
1295 1.179(17) 1.197(12) 1.221(18)
1369 1.238(18) 1.272(18) 1.198(18)
1952 1.256(18) 1.229(18) 1.214(18)

6.6 Sorting and analysis of 21Ne(p, γ) data

The 21Ne(p, γ) data were sorted using the JAM program to generate his-

tograms of various spectra. A sample γ-ray singles spectrum from HPGe1

in the close-packed configuration is shown below. We clearly identify the

peaks of interest from transitions in 22Na following the deexcitation of the

1952 keV level. We also identify 10 other γ rays from the resonance that

arise from feeding to higher lying states in 22Na (see Fig. 6.28). We discuss

some aspects of this spectrum below.

In addition to the gammas generated from the 21Ne(p, γ) resonance (Ta-

ble 6.14) we also identify several contaminant peaks in the spectrum shown

in Fig. 6.27 and Table 6.15.
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Figure 6.27: Top panel: Singles γ-ray spectrum from HPGe1
in close-packed configuration. Contaminant peaks are clearly
labeled. Bottom panel: The three gamma-rays of interest from
the 1952 keV state shown with their fits. The broad 1966 keV
line is an escape peak of the 2988 keV gamma ray shown in
Table 6.15.
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Table 6.14: Gamma rays from the 21Ne(p, γ)
resonance.

Eγ Transition
(keV) Ei → Ef (keV)
583 583 → 0
891 891 → 0
1093 1983 → 891
1295 1952 → 657
1369 1952 → 583
1400 1983 → 583
1952 1952 → 0
1983 1983 → 0
2626 7800 → 5174
3191 5174 → 1983
4591 5174 → 583
5848 7800 → 1952
7800 7800 → 0

Table 6.15: Beam induced contaminants.
Eγ Source of beam

(keV) related contaminant
1275 22Na β decay + 22Ne(p, p′)
1281 From non-resonant capture∗

1634 19F(p, γ)
1968 22Ne(p, p′)
2780 19F(p, p′)
2988 22Ne(p, p′)
6129 19F(p, α)

∗This effect proceeds via a 1936→ 657 keV transition in 22Na.

The main contaminant peaks (ignoring room background) arise from 19F

and 22Ne impurities in the target. The 19F contamination is a common effect

observed while using Tantalum backings [46] and can easily be identified

from a 6129 keV peak arising from strong 19F(p, αγ) resonances. The 22Ne

contamination in the target can be explained by tails in the momentum

distribution of the mass-separated ions during the implantation process. It

is possible that the momentum profile was highly asymmetrical as we find

no indication of 20Ne implantation from our spectra.

78



Figure 6.28: Transitions from the 7800 keV level that are ob-
served in our experiment.

The coincidence spectra shown in the figures below offer a diagnostic tool to

verify our peak identification for analysis. These spectra were not used for

the final branching fraction determination due to lack of statistics. Fig. 6.29

shows the singles γ-ray spectrum from the NaI detector in the close-packed

configuration. The coincident HPGe spectra were obtained by gating on the

Eγ = 5848 keV peak in the NaI detector and the prompt TAC peaks for

HPGe1 and HPGe2 respectively (see Figs. 6.29 and 6.30).
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As shown in Fig. 6.31, the coincidences show that the 1952 keV peak in-

deed arises from the Ex = 7800 → 1952 → 0 keV transitions. Due to the

limitations of the low resolution NaI detector, Figs. 6.32-6.35 were further

used as diagnostic tools to check the reliability of our energy gates to generate

the coincidences.

Figure 6.29: Singles γ-ray spectrum from the NaI detector.
The NaI energy gate used to generate coincidences is shown.

Figure 6.30: A sample TAC spectrum with the gated region
that was used to generate the coincidence spectrum shown be-
low.
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Figure 6.31: HPGe1 coincidence spectrum generated with the
gate shown above. The prominent gamma lines from 22Na are
labeled.

Figure 6.32: NaI coincidence spectrum generated by gating on
583 keV gamma peak of HPGe1.
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Figure 6.33: NaI coincidence spectrum generated by gating on
1369 keV gamma peak of HPGe1. .

Figure 6.34: NaI coincidence spectrum generated by gating on
5848 keV gamma peak of HPGe1.
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Figure 6.35: HPGe2 in coincidence with HPGe1 gated on 583
keV (left) and 5848 (right) keV.

6.7 Branching ratio determination

The photo peak areas of the three gamma-rays of interest Nγ(i) from the

close-packed configuration were used to calculate the branching ratio Br(i)

using the formula

Br(i) =
Nγ(i)

3∑
j=1

Nγ(j) ·
εγ(i)

εγ(j)

, (6.25)

where εγ(i) and εγ(j) were obtained from the simulations. The results from

both detectors are shown in the tables below.

Table 6.16: Relative branches from HPGe1.
Energy Br(i)
(keV) (%)
1295 0.236(41)
1369 98.983(57)
1952 0.781(41)

Table 6.17: Relative branches from HPGe2.
Energy Br(i)
(keV) (%)
1295 0.257(57)
1369 98.756(95)
1952 0.987(77)
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6.8 Angular distribution data

In the second configuration we obtained angular distribution information for

the 1369 and 1952 keV gamma rays. Fig. 6.36 show angular distribution for

the 1952 keV gamma-ray. Clearly the data lack statistics to infer the multi-

polarity of the transition. The isospin selection rules discussed in Section. 4.4

suggest the E2 matrix element for this 2+ → 3+ ∆T = 1 transition to be

small relative to the M1 matrix element. However, this need not be true in

general as isospin is not a good quantum number in describing nuclei.

Figure 6.36: Angular distribution of the 1952→0 keV transi-
tion. The yield is normalized to the summed area of all the
peaks listed in Table. 6.14 from HPGe2, postioned at 90◦ to
the beam.

On extracting the angular distribution of the 1369 keV gamma-ray which

arises from a 2+ → 1+ ∆T = 1 transition, it is clear (see Fig. 6.37) that
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a significant quadrupole component is required to describe the data, partic-

ularly at 55◦, where P2(cos θ) vanishes. This is in contradiction with the

isospin selection rule favoring strong isovector M1 transitions relative to E2

transitions. Our result is also in conflict with an older measurement of the

mixing ratio [45] which suggests that the E2 component should be negligible.

The latter should not be surprising as angular correlation measurements in

those days were performed with poor resolution NaI scintillator detectors.

Nonetheless, clearly more data are required to obtain the E2/M1 mixing

ratio for the 1952→0 keV transition of interest which is relavant for this

work.

Figure 6.37: Angular distribution of the 1952→583 keV tran-
sition. The yield is normalized to the summed area of all the
peaks listed in Table. 6.14 from HPGe2, postioned at 90◦ to
the beam.
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Chapter 7

Conclusions and future
directions

Assuming that the 1952 → 0 keV transition is purely M1, we can extract

the partial width of the 2+
1 → 3+ decay in 22Na from the total width Γ =

0.057± 0.0143 eV [33], using

ΓM1 = Γ ·Br(1952→ 0) . (7.1)

The weak magnetism form factor can then easily be calculated using Eq. (4.10).

Finally, we use the A22 β − γ correlation coefficient from the Berkeley mea-

surement and Eq. 4.14, to obtain both B and the tensor form factor D shown

in Table. 7.1.

Table 7.1: Partial width and the form factors
obtained from the HPGe1 and HPGe2.

Detector
ΓM1 b B † D×10−4 eV

HPGe1 4.5(1.1) 4.5(6) -13.5(1.7) 25.6(5.9)
HPGe2 5.6(1.5) 5.1(7) -15.2(2.0) 27.2(6.0)

†B and c1 should have opposite sign to prevent c2 from attaining
unrealistically large values [2, 32].

In order to calculate the D term, the axial-vector form factor c1 = 0.015 1

was obtained from the ratio of the ft value of pure Fermi superallowed de-

1The uncertainty in c1 is small and neglected.
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cays to that of 22Na decay2 so that c1 =
√

2ftfermi/ft(22Na) [48], with

ftfermi = 3072.27 ± 0.72 s [47]. The second-order axial-vector form factor

was set to c2 ≈ 0 following the arguments of Ref. [32].

It is clear from Table 7.1 that although we make an unambiguous first mea-

surement of the 2+
1 → 3+ branch in 22Na, our results, which are higher than

the quoted unpublished value of Ref [2] do not resolve the issue regarding the

anomalously large G-parity violating induced-tensor form factor from 22Na

beta decay. The ratios of the E2 to M1 transition strengths in terms of the

Weisskopf single particle estimates described in Section 3.3 are 2.8 × 10−4

for the 1369 keV gamma-ray and 5.4× 10−4 for the 1952 keV gamma-ray. A

shell model calculation on the other hand, using the NuShellX code with the

USD-B interaction shows that the M1 strength relative to the E2 is smaller

by a factor of 2 for the 1952→0 keV transition, while it is 75 times stronger

for the more intense 1952→583 keV transition [49]. Clearly a measurement

of the E2/M1 mixing for the 1952→0 keV transition will offer a path ahead.

But measuring the mixing ratio for such a weak branch will be challenging.

It is interesting that our angular distribution data indicate a strong E2

component to the matrix element for the 1952→583 keV isovector transi-

tion . Since the 22Na nucleus is known to be highly deformed, with well

known rotational bands [50], it is possible that K-quantum number selec-

tion rules suppress the dipole component relative to the quadrupole for both

cases, based on K-forbiddenness. The role of isospin mixing also needs to be

investigated in some more detail to better explain our results.

2Isospin-symmetry breaking corrections in 22Na beta decay were neglected as they are
assumed to be small compared to our uncertainties.

87



Appendix A

Least Squares Fitting

Suppose one wants to fit a line to a set of data, say (xi, yi). A very useful

function used for such fitting is a power-series polynomial of the form

y(x) = a1 + a2x+ a3x
2 + a4x

3 + · · ·+ amx
m−1 , (A.1)

where the dependent variable y is expressed as a sum of power series of the

independent variable x with coefficients a1, a2, a3, a4, and so forth. To do

so one have to first find the values of the ak’s coefficients that minimize the

discrepancy between the variable y and the independent variable x. Lets

rewrite Eqn. (A.1) as

y(x) =
m∑
k=1

akx
k−1 =

m∑
k=1

akfk(x). (A.2)

For any estimated values of the coefficients ak’s, one can calculate the prob-

ability of obtaining the measurement yi with standard deviation σi as

P (ak) =
∏(

1

σi
√

2π

)
exp

−1

2

∑ 1

σ2
i

[
yi −

m∑
k=1

akfk(xi)

]2
 . (A.3)

Because the first factor in the product of Eqn. (A.3) is not dependent on

the values of the coefficients, maximizing the probability P (ak) is equivalent

to minimizing the sum in the exponential. The sum is defined to be the

goodness-of-fit coefficient χ2

χ2 =
∑[

1

σi

[
yi −

m∑
k=1

akfk(xi)

]]2

(A.4)
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To find the values of the coefficients that yields the minimum value of χ2,

the partial derivative of the χ2 with respect to the coefficients is set to zero

∂

∂al
χ2 =

∂

∂al

∑[
1

σi

[
yi −

m∑
k=1

akfk(xi)

]]2

= −2
∑{

fl(xi)

σ2
i

[
yi −

m∑
k=1

akfk(xi)

]}
(A.5)

= 0

From Eqn. (A.5) one can obtain a set of m coupled linear equations for the

m coefficients al, with the index l running from 1 to m:

∑
yi
fl(xi)

σ2
i

=
m∑
k=1

{
ak
∑[

1

σ2
i

fl(xi)fk(xi)

]}
. (A.6)

The solutions to Eqn. (A.6) are found by the method of determinants. Eqn.

(A.7) display the solution to the a1 coefficient,

a1 =
1

∆


∑
yi
fl(xi)

σ2
i

∑ f1(xi)f2(xi)

σ2
i

∑ f1(xi)f3(xi)

σ2
i

. . .∑
yi
f2(xi)

σ2
i

∑ f2(xi)f2(xi)

σ2
i

∑ f2(xi)f3(xi)

σ2
i

. . .∑
yi
f3(xi)

σ2
i

∑ f3(xi)f2(xi)

σ2
i

∑ f3(xi)f3(xi)

σ2
i

. . .
...

...
...

...

 , (A.7)

with

∆ =


∑ f1(xi)f1(xi)

σ2
i

∑ f1(xi)f2(xi)

σ2
i

∑ f1(xi)f3(xi)

σ2
i

. . .∑ f2(xi)f1(xi)

σ2
i

∑ f2(xi)f2(xi)

σ2
i

∑ f2(xi)f3(xi)

σ2
i

. . .∑ f3(xi)f1(xi)

σ2
i

∑ f3(xi)f2(xi)

σ2
i

∑ f3(xi)f3(xi)

σ2
i

. . .
...

...
...

...

 (A.8)
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Appendix B

Gauss-Jordan Elimination

The method of least squares requires a solution of a set of n simultaneous

equations in n unknowns ai similar to the following matrix

[yk] = [aj][Xkj] . (B.1)

One could multiply the matrix in Eqn. (B.1) by another matrix X−1, the

inverse matrix. This multiplication gives the solutions to the coefficients aj

[yk][Xkj]
−1 = [aj]1 = [aj] . (B.2)

The expression in Eqn. (B.2) can be rewritten more conveniently to give the

solution for each of the coefficients aj in the form

aj =
n∑
k=1

(ykX
−1
kj ) . (B.3)

Thus, the solutions to the coefficients aj in Eqn. (B.1) has been reduced to

evaluating the inverse matrix X−1.

To evaluate the matrix X−1, one can use the Gauss-Jordan Elimination

method to invert a matrix X from a unity matrix while reducing the orig-

inal matrix to unity. Consider the inverse matrix X−1 as the ratio of the

unity matrix divided by the original matrix, X−1 = 1/X. If the numerator

and denominator are manipulated in the same manner (multiplying rows or

columns by the same constant factor and adding the same rows scaled to the
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same constants), the ratio remains unchanged. If the manipulation are done

properly, one can change the denominator into the unity matrix; then the

numerator becomes equal to the inverse matrix X−1. Consider a 3×3 matrix

A and 3×3 unity matrix.X11 X12 X13

X21 X22 X23

X31 X32 X33

 1 0 0
0 1 0
0 0 1

 (B.4)

To reduce the matrix X to the unity matrix, one can start by using the

substraction in Eqn. (B.5) on the first and second rows

X ′kj = Xkj −X1j
Xk1

X11

, (B.5)

and also dividing the first row by X11. These gives the diagonal element of1 A12

A11

A13

A11

0 A22 − A12
A21

A11
A23 − A13

A21

A11

0 A32 − A12
A31

A11
A33 − A13

A31

A11

  1
A11

0 0

−A21

A11
1 0

−A31

A11
0 1

 (B.6)

With further manipulation, the matrix on the left becomes a unity matrix

and that on the right becomes an inverse matrix.
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Appendix C

Fitting Program - polynomial
plus least squares

#include "nr.h"

#include <iostream>

#include <fstream>

#include <iomanip>

#include <math.h>

#include <stdlib.h>

#include "gasdev.h"

#include "lfit.h"

#include "gaussj.h"

#include "covsrt.h"

#include "ran1.h"

using namespace std;

// Driver for routine lfit

void funcs(const DP x, Vec_O_DP &afunc)

{

int i;

int ma = afunc.size();
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afunc[0] = 1.0;

afunc[1] = 1.0*x;

for (i=2; i<ma; i++)

{

afunc[i] = afunc[i-1]*x;

}

}

int main(void)

{

//int NPT=100;

const int NPT=14;

int NTERM;

cout << "Enter the number of NTERM:" << endl;

cin >> NTERM;

const DP SPREAD=0.1;

int i,j,k,idum=(-911);

DP chisq;

Vec_BOOL ia(NTERM);

Vec_DP a(NTERM),x(NPT),y(NPT),sig(NPT),yfit(NPT),sigYfit(NPT),sigx(NPT);

Vec_DP xCo56(NPT),yCo56(NPT),sigXCo56(NPT),sigYCo56(NPT);

Vec_DP xCo60(NPT),yCo60(NPT),sigYCo60(NPT);

Mat_DP covar(NTERM,NTERM);

fstream fout, fin, fin1, fout1, fout2, fout3;

//fin.open("edit.dat",ios::in);

fin.open("/home/lutendo/newfit/1496/loglog1496_det2.dat",ios::in);

fout.open("1496_det2.dat", ios::out);

fout1.open("1496_det2_parameters.dat", ios::out);

fout2.open("1496_det2_poly.dat", ios::out);

fout3.open("1496norm_det2.dat", ios::out);
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cout << fixed << setprecision(10);

int kk=0, peaks, peaks1;

if(fin.good())

{

while(!fin.eof())

{

fin >> xCo56[kk] >> yCo56[kk] >> sigYCo56[kk];

if(xCo56[kk] != 0.0)

{

cout << xCo56[kk] << ’\t’ << yCo56[kk] << ’\t’ << sigYCo56[kk] << endl;

kk++;

}

}

peaks = kk;

cout << "No of points : " << peaks << endl;

}

else

{

NR::nrerror("Co56 data file not found...");

}

for (i=0;i<NPT;i++)

{

x[i]=xCo56[i];

y[i] = yCo56[i];

sig[i] = sigYCo56[i];

cout << x[i] << "\t" << y[i] << "\t" << sig[i] << endl;

}

for(i=0; i<NPT; i++)
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funcs(x[i],a);

for(i=0; i<NTERM; i++)

{

// if(i==1)

ia[i] = true;

// else

// ia[i] = false;

}

//cout << "print" << endl;

NR::lfit(x,y,sig,a,ia,covar,chisq,NPT,funcs);

cout << endl << setw(11) << "parameter";

cout << setw(22) << "uncertainty" << endl;

cout << scientific << setprecision(5);

//for (i=0;i<NPT;i++)

//{

//cout << x[i] << endl;

//}

for (i=0; i<NTERM; i++)

{

cout << " a[" << i << "] = " << setw(8) << a[i];

cout << setw(13)<< sqrt(covar[i][i]) << endl;

}

cout << "chi-squared = " << setw(12) << chisq << endl << endl;

cout << "full covariance matrix" << endl;

// cout << scientific << setprecision(4);

for (i=0; i<NTERM; i++)

{

for (j=0; j<NTERM; j++)
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cout << setw(15) << covar[i][j];

cout << endl;

}

cout << endl << "press RETURN to continue..." << endl;

cin.get();

cout << endl;

// Now check results of restricting fit parameteres

for (i=0; i<NPT; i++)

{

for(j=0; j<NTERM; j++)

yfit[i] += a[j]*pow(x[i],j);

//cout << x[i] << endl;

//sigYfit[i] = a[1]*sig[i];

fout2 << x[i] << "\t" << yfit[i] << endl; // "\t" << sigYCo56[i] << endl;

}

double y_1173=0.0, y_1332=0.0, sig_1173=0.0;

for(j=0; j<NTERM; j++)

{

y_1173 += a[j]*pow(log(1173.228),j);

sig_1173 += ((sqrt(covar[j][j]))*pow(1173.228,j)

+ (a[j])*(j)*(pow(1173,j-1))*(0.003));

y_1332 += a[j]*pow(log(1332.492),j);

}

//cout << exp(y_1173) << "\t" << sig_1173 << endl;

double deltaEsqrd_1173=0.0, deltaEsqrd_1332=0.0;

for(i=0; i<NTERM; i++)

{

// cout << x[i] << endl;
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for(j=0; j<NTERM; j++)

{

deltaEsqrd_1173 += covar[i][j]*pow(log(1173.228),j)*pow(log(1173.228),i);

deltaEsqrd_1332 += covar[i][j]*pow(log(1332.492),j)*pow(log(1332.492),i);

//cout << sqrt(deltaEsqrd) << "\t";

//cout << setw(15) << covar[i][j] << "\t";

}

//cout << endl;

}

double mike, lut;

mike = 1173.228;

lut = 1332.492;

fout3 << mike << "\t" << exp(y_1173) << "\t"

<< exp(y_1173)*sqrt(deltaEsqrd_1173) << endl;

fout3 << lut << "\t" << exp(y_1332) << "\t"

<< exp(y_1332)*sqrt(deltaEsqrd_1332) << endl;

cout << "Now checking results of restricting fit parameters" << endl;

for (i=0; i<NTERM; i+=2)

ia[i]=false;

NR::lfit(x,y,sig,a,ia,covar,chisq,NPT,funcs);

cout << endl << setw(11) << "parameter";

cout << setw(22) << "uncertainty" << endl;

fout1 << endl << setw(11) << "parameter";

fout1 << setw(22) << "uncertainty" << endl;

cout << fixed << setprecision(6);

fout1 << fixed << setprecision(6);
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for (i=0; i<NTERM; i++)

{

cout << " a[" << i << "] = " << setw(8) << a[i];

fout1 << " a[" << i << "] = " << setw(8) << a[i];

cout << setw(13) << sqrt(covar[i][i]) << endl;

fout1 << setw(13) << sqrt(covar[i][i]) << endl;

}

cout << "chi-squared = " << setw(12) << chisq << endl << endl;

cout << "full covariance matrix" << endl;

cout << scientific << setprecision(4);

for (i=0; i<NTERM; i++)

{

for (j=0; j<NTERM; j++)

cout << setw(15) << covar[i][j];

cout << endl;

}

cout << endl;

for(j=0; j<NTERM; j++)

{

y_1173 += a[j]*pow(log(1173.228),j);

sig_1173 += (sqrt(covar[j][j]))*pow(1173.228,j);

y_1332 += a[j]*pow(log(1332.492),j);

// cout << sqrt(covar[j][j]) << endl;

}

// cout << exp(y_1173) << "\t" << sig_1173 << endl;

return 0;

}

}
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