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Abstract

This project aimed to investigate proton unbound states in 32Cl

using the 32S(3He, t) charge-exchange reaction. This research is

relevant both in the context of nuclear structure and astrophysics.

Excited states in 32Cl up to Ex ∼ 6 MeV were produced using a

50 MeV 3He++ beam from the K200 separated sector cyclotron

at iThemba LABS. The triton ejectiles were mass analysed and

detected at the focal plane of the K600 magnetic spectrometer.

An additional segmented silicon detector array called CAKE was

used to detect the unbound protons from states in 32Cl in con-

junction with the tritons. In this work we looked for potential

sources of isospin admixture that could explain the apparent vi-

olation of the Isobaric Multiplet Mass Equation (IMME) for the

A = 32, T = 2 quintet. We also investigated the possibility of de-

termining the 31S(p, γ) reaction rate indirectly, via measurements

of the partial proton widths of unbound states in 32Cl.
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Introduction

The main purpose of this project was to study proton unbound states in 32Cl

in order to better understand isospin symmetry violations in the A = 32,

T = 2 isospin quintet. Furthermore, an attempt was made to indirectly

determine the 31S(p, γ) reaction rate, which is an important reaction for

nuclear astrophysics. The summary of this thesis is below.

In the first chapter I describe the motivation for this work from a nuclear

structure perspective. The theoretical background describing nuclear isospin

and its violation in the form of the Isobaric Multiplet Mass Equation (IMME)

is described in this chapter. I further motivate the reason to investigate the

violation of the IMME for the A = 32, T = 2 quintet, which could be due to

isospin mixing in 32Cl. Thereafter, the aim was to experimentally probe for

sources of admixtures in the 32Cl nucleus.

In the second chapter I introduce the astrophysical relevance of 31S(p, γ)

resonances. Here I describe stellar nucleosynthysis, with particular focus on

explosive phenomena such as novae and x-ray bursts. The 31S(p, γ) reaction

rate is important in this context as it influences the Si-P burning cycle. I

then describe resonance reactions, and derive their cross section by means

of scattering theory. Finally I also derive the mathematical expressions to

calculate the stellar nuclear reaction rates using the cross section.

In the third chapter I explain the experimental techniques and apparatus

1



that were used to experimentally probe the 32Cl states of interest.

In the fourth chapter I provide a detailed description of the data analysis

procedure. Finally, I introduce a set of algebraic constraints that can be used

to extract spins and parities of proton-unbound states from proton angular

distribution measurements for other similar investigations. My conclusions

are briefly described in the final chapter.
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Chapter 1

Nuclear isospin and the IMME

1.1 Charge independence of nuclear forces

When the neutron was discovered in 1932, it was observed that it had the

same spin quantum number and almost the same mass as the proton. In

1936, the analysis of pp and np scattering data revealed that if one takes into

consideration the Coulomb force, the pp and the np nuclear force were almost

equal in strength. Therefore, it was inferred that the nuclear force between

any two nucleons is charge independent [1]. Later on, it was suggested by

Heisenberg that protons and neutrons can be seen as different states of the

same particle, the nucleon. Thus, a new quantum number was needed to

label these two different representations of the nucleon. It was called isospin.

1.2 Isospin formalism

The introduction of isospin as a quantum number is a direct consequence of

the charge independence of hadronic forces. From a mathematical point of

view, the algebra of isospin and spin are identical [2]. Analogous to spin-1
2
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particles, the isospin formalism treats the difference between a proton and

a neutron similarly as the difference between spin-up and spin-down parti-

cles, with Sz = ±1
2
. As mentioned previously nucleons are labelled with

the additional quantum number called isospin, denoted by t = 1
2
, with two

possible projections along the third axis, t3 = ±1
2
, representing neutrons and

the protons respectively. This is shown in Figure 1.1. All the commutation

Figure 1.1: A neutron and a proton represented as projections in isospin
space

relations for spin angular momentum follow naturally for isospin

[t1, t2] = it3, [t3, t1] = it2, [t3, t2] = it1. (1.1)

By the convention shown in Figure 1.1, the charge q of a nucleon is related

to the third component isospin t3, so that

q = e(
1

2
− t3). (1.2)
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For atomic nuclei the total charge can be obtained by summing over all

nucleons

Ze =
A∑
i=1

qi = e(
A

2
− T3), (1.3)

where,

T3 =
A∑
i=1

t3,i. (1.4)

From Eq. (1.3) it is obvious that

T3 =
A

2
− Z =

(N − Z)

2
. (1.5)

It thereby follows that the isospin of nuclei are in the range

1

2
| N − Z |≤ T ≤ 1

2
A. (1.6)

If isospin were a good quantum number, the nucleon wave function would

be invariant under rotations in isospin space. This symmetry leads to a

conservation of the nucleon’s mass, independent of its projection in isospin

space.1 This symmetry is obvious in pairs of mirror nuclei, which have the

same mass number A, and different atomic number, with Z1 = 1
2
(A−x), and

Z2 = 1
2
(A+ x), where x is an integer. Observations have shown that mirror

nuclei have similar binding energies and excitation energy spectra validating

this symmetry (see Figure 1.2). If the symmetry was perfect in nature, these

states should have identical masses, and they would be degenerate. Such

states form part of an isospin multiplet.

1The mass difference between the u and the d quarks is neglected in this discussion
and hereafter.
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Figure 1.2: Level scheme for mirror nuclei, 7Li and 7Be. It should be noted
that once electromagnetic corrections are taken into account, the energy lev-
els in these nuclei are almost identical. Figure taken from Ref. [3]

.

1.2.1 Isospin symmetry breaking

It is well established that an external electromagnetic field breaks the de-

generacy of energy levels in atomic nuclei (the Stark and Zeeman effects).

Similarly, isospin symmetry is broken in nuclei by charge-dependent interac-

tions. This results in the small difference between analogue levels in mirror

nuclei, such as the ones shown in Figure 1.2. If one adds an electromagnetic

Hamiltonian to the hadronic (charge independent) Hamiltonian so that

H = Hh +Hem, (1.7)

then the breaking of isospin symmetry results in [H,T ] 6= 0, i.e isospin not

being a conserved quantity. It is apparent from Eq. (1.3) that the third

component of isospin T3 is directly related to the nuclear charge, which is a

6



Figure 1.3: Breaking of a degeneracy by an external field.

conserved quantity. Therefore T3 commutes with the Hamiltonian in Eq. (1.7)

unlike T . States having the same quantum numbers (spin, parity, isospin,

etc) that belong to neighbouring isobars are called isobaric analogue states

(IAS). For a given isobaric multiplet with isospin T , there exist (2T + 1)

IAS which would be degenerate in the presence of purely charge independent

hadronic forces. The (2T + 1)−fold degeneracy is lifted in the presence of

charge-dependent interactions, so that the IAS are shifted relative to each

other (see Figure 1.2 and Figure 1.3). These IAS belong to different nuclei

(isobars) that are characterised by different projections T3, for a given T .

They have nearly identical masses and other similar nuclear properties based

on the approximate symmetry of isospin. More specifically, isospin symmetry

breaking in nuclei results from charge dependent perturbations which are re-
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lated to T3. In the most simple situation, the charge-dependent Hamiltonian

in Eq. (1.7) can be expressed as a two-body Coulombic interaction, using

Eq. (1.2)

Hem = e2
∑
i<j

(
1

2
− ti3

)
.

(
1

2
− tj3

)
r−1
ij . (1.8)

This Hamiltonian can be expressed as a sum of isoscalar, isovector and an

isotensor operator of rank 2 [4], so that

H0
em =

1

3
e2
∑
i<j

(
3

4
+ ~ti.~tj

)
r−1
ij , (1.9)

H1
em =

1

2
e2
∑
i<j

(
ti3 + tj3

)
r−1
ij , (1.10)

H2
em =

1

3
e2
∑
i<j

(
3ti3t

j
3 + ~ti.~tj

)
r−1
ij . (1.11)

Now the T3 dependencies can be factored out from the matrix element of

Hem using the Wigner-Eckart theorem [4], so that the “reduced” expectation

value of the electromagnetic Hamiltonian can be written as

Eem(A, T, T3) =
2∑

k=0

(−1)T−T3

T k T

T3 0 T3

 〈T ||H(k)
em ||T 〉. (1.12)

Which results in a quadratic relation in T3 for the Coulomb energies of the

multiplet members

Eem(A, T, T3) = E(0)
em(A, T )− T3E

(1)
em(A, T )

+(3T 2 − T (T + 1)E(2)
em(A, T ),

(1.13)

8



where, E
(0)
em, E

(1)
em and E

(2)
em, are the scalar, vector and tensor Coulomb energies.

The masses of the members of an isobaric multiplet are given by [4]:

M(A, T, T3) =
1

2
(mn +mH)A+ (mn −mH)T3 + 〈TT3|H0|TT3〉

+〈TT3|H1|TT3〉+ Eem(A, T, T3)

(1.14)

Here:

• H0 is the charge independent part of the Hamiltonian.

• The term linear in T3, represents the difference between the electro-

magnetic self energies of the proton and neutron.

• All charge-dependent effects other than electrostatic interactions be-

tween protons and their-self energy are contained in 〈TT3|H1|TT3〉.

• Eem is the Coulomb energy given in Eq. (1.13).

From Eq. (1.13) and Eq. (1.14) it can be easily seen that the masses of an

isobaric multiplet satisfy the quadratic form

M(A, T, T3) = a(A, T ) + b(A, T )T3 + c(A, T )T 2
3 , (1.15)

which is called the isobaric multiplet mass equation (IMME). The IMME

has been a very successful tool in the past to predict masses and other ob-

servables where direct measurements were difficult. For example it has been

used to map the proton drip line, determine the rp-processes path in stellar

nucleosynthesis and to identify nuclei that decay with diproton emission [5].

Recently, together with shell model calculations, the IMME was used to de-

duce (p, γ) reaction rates relevant for stellar nucleosynthesis [6] and constrain
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calculations of isospin mixing in 0+ → 0+ β-decays for fundamental tests of

the electroweak interactions [7].

1.3 Isospin mixing in nuclei

Assume two states of the same spin and parity, but different isospin, rep-

resented by |φ1〉 and |φ2〉 (shown in Figure 1.4), that are separated by an

energy difference ∆Eu. The energy eigenvalues of these nuclear states are

represented by E1 and E2 respectively. In reality, these states are known to

have admixtures of different configurations on account of the residual interac-

tion, which can be treated as a perturbation. As a result of this perturbation,

Figure 1.4: Two-state isospin mixing
.

the perturbed energy eigenvalues are obtained by diagonalising the matrix [8]

E1 V

V E2

 , (1.16)

where 〈φ2|V |φ1〉 is the isospin mixing matrix element. By defining a ratio

R =
∆Eu

〈φ2|V |φ1〉
, (1.17)

10



one can obtain the perturbed energies in terms of the unperturbed levels E1

and E2,

E2p,1p =
(E1 + E2

2

)
± ∆Eu

2

√
1 +

4

R2
. (1.18)

Its follows that, on account of the perturbations each energy eigenvalue is

shifted by |∆Es| = |E1p − E1| = |E2p − E2|, so that

|∆Es| =
∆Eu

2

[√
1 +

4

R2
− 1

]
. (1.19)

The isospin admixed states are given by

|ψ1〉 = α|φ1〉+ β|φ2〉, (1.20)

|ψ2〉 = −β|φ1〉+ α|φ2〉, (1.21)

where α and β are probability amplitudes, so that α2 + β2 = 1 and β =

1(
1+

[
R
2

+

√
1+R2

4

]2) 1
2

. It is evident from Eq. (1.19) that the mixing between

the states depends only on ∆Eu and the mixing matrix element 〈φ2|V |φ1〉.

This describes briefly the algebra of isospin mixing in nuclei. The reason for

this discussion will become evident in the section below.

1.3.1 The IMME for the A = 32 quintet

In general the quadratic form of IMME is expected to hold quite well for

nuclei with A < 40. The IAS within these multiplets are unlikely to suffer

from isospin mixing effects because of the relatively low level density in these

nuclei. The A = 32, T = 2 quintet is one of the most precisely measured

multiplets to date [9]. In this case a dramatic break-down of the IMME was

reported, requiring an additional cubic term dT 3
3 with d = 0.89± 1.3 keV to

11



Figure 1.5: The A = 32, T = 2 quintet (green) and T = 1 triplet (black).
The ground states are expressed in term of the mass excess.

obtain a reasonable fit to the data [10, 11]. The reason for this violation in the

A = 32 quintet is still a mystery [12]. Potential reasons for this breakdown

could be isospin mixing, the requirement for 3-body forces, or a higher-order

perturbation theory etc. Recent shell model calculations have hinted at the

possibility of a non-analogue 0+ state in the vicinity of the T = 2, isobaric

analogue state of 32Cl that mixes with the IAS and leads to a breakdown of

the IMME [13]. However this claim has not been experimentally verified yet.

The calculations indicate the presence of a non-analogue 0+ state ∼ 73 keV

around the IAS, with a mixing matrix element of 〈φ2|V |φ1〉 ∼ 20 keV [13].

This would lead to a shift in the energy of each state, |∆Es| ≈ 6 keV,

resulting in a ratio of R ≈ 3 from Eq. (1.17). This value quantifies the small

shift in the energy of the 0+ IAS due to isospin mixing with a non-analogue

state that is separated from the IAS by ∼ 73 keV. Such a shift can explain

the requirement for a small cubic term with d ∼ 1 keV for this particular

multiplet. One of the main goals of this work is to look for this source of

isospin admixture around the T = 2 state in 32Cl (see Figure 1.5).
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Chapter 2

Novae Nucleosynthesis and the

31S(p, γ) reaction

According to the standard Big Bang cosmology, the expansion and cooling of

the early universe allowed for quarks to condense together to form nucleons.

As the temperature further dropped to around 1011 K, the protons and neu-

trons remained in equilibrium interconverting through the weak interaction

processes:

νp→ e+n, (2.1)

and

νn→ e−p. (2.2)

As expansion of the universe continued, 1 s after the big bang the temperature

dropped to ∼ 1010 K. The neutron to proton ratio froze out at this instant

with the ratio 1 : 6 [14]. This is because the weak interaction rates shown

above become slower than the expansion rate and the small neutron-proton

mass difference favors proton production to neutrons. This ratio gradually

gets worse for the neutrons as they further β decay to stable protons. Fur-
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ther fusion of the excess protons (or hydrogen nuclei) leads to the formation

of helium. Basically all the hydrogen and helium that exist in the universe

originate from this Big Bang nucleosynthesis era 1.

So far the universe is made of hydrogen and helium gas scattered all over the

space. In the regions of sufficiently dense clouds of matter, the gravitational

force initiates collisions within the gas core, thus increasing its tempera-

ture [1]. This allows the hydrogen at the core to overcome the Coulomb bar-

rier and fuse into helium, which eventually forms a main sequence star [15].

When the hydrogen in the star is completely exhausted, the star begin to

contract due to the absence of an outward radiation pressure. The gravita-

tional contraction of the star leads to a further increase in the temperature,

making it possible to fuse helium into heavier elements [16]. This thermonu-

clear burning continues as long as sufficient fuel is available. A small fraction

of the helium remains that undergoes a series of nuclear reactions producing

carbon, oxygen, neon, etc [15, 16]. In this process, the star keeps piling up

shells of elements in an onion-like structure with the higher mass elements

closer to the core, as shown in Figure 2.1. The core of the most massive

stars comprises of iron, which has the maximum binding energy per nucleon

of all elements, as shown in Figure 2.2. Consequently, the unavailability of

energy to fuse 56Fe to make heavier elements stops this nucleosynthesis pro-

cess at the iron group [1]. It is now understood that elements beyond 56Fe

are formed by slow and rapid neutron capture reactions (s- and r-processes),

where the neutron abundances are produced in events such as short-lived

violent supernovae [15] or neutron star mergers [18].

1The remaining heavier elements are formed much later, via stellar and supernovae
nucleosynthesis.
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Figure 2.1: Elemental abundances in a stellar interior. Figure taken from [17].

Figure 2.2: Binding energy per nucleon vs atomic mass.56Fe is the most stable
element since it has the maximum binding energy per nucleon.

2.1 Novae and supernovae

The atoms in the stellar core are completely ionized and the free electrons

form a highly degenerate gas. In some cases the degeneracy pressure balances

the gravitational contraction even after the fuel in the inner shell is exhausted,

thereby halting further stellar collapse. Such stars are called white dwarfs.

At this stage if the mass of the star is greater than the Chandrasekhar limit

M > 1.44 M� (M� being the mass of the Sun), the electron degeneracy
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pressure is not enough to prevent further gravitational collapse. The electrons

fuse with protons forming neutrons, and these can not β-decay because the

resulting electrons will have no states to populate, collapsing the core into

nucleon gas, which leads to the formation of black holes or neutron stars [15].

For massive stars with M ≥ 8 M�, gravitational contractions can lead to

further burning of the remaining small amount of nuclear fuel and collapse

of the stellar core. The photodisintegration of iron nuclei and further cooling

by escaping neutrinos speed up the collapse, leading to a violent explosion

that is called a Type II or core-collapse supernova [15].

2.1.1 Binary systems: Type I supernovae, novae and

X-ray bursts

A binary star system usually consists of a hydrogen-rich young star and an

older, highly dense star that is usually a white dwarf or a neutron star [15, 16].

The stars interact gravitationally, thus allowing for accretion of matter from

the younger companion onto the surface of the older star which initiates

thermonuclear reactions (Figure 2.3). These reactions occur because the ac-

Figure 2.3: A binary star system. Figure is taken from [19]
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creting hydrogen-rich material accumulates on the surface of the older (dense)

star and eventually becomes degenerate matter, which resists further com-

pression. This degeneracy pressure prevents cooling as transitions to lower

energy quantum states are not possible. As a result, the temperature on the

surface of the dense star increases rapidly, leading to uncontrolled reactions

called a thermonuclear runway [15, 20]. This results in a rapid increase in

the luminosity of the star up to about ∼ 105 solar luminosities. These phe-

nomena are called classical novae, which can last for months or years before

they fade. If the white dwarf gains mass that exceeds the Chandrasekhar

limit due to the accretion process, the white dwarf collapses in a violent

explosion, called a type I supernova [15]. Similar to classical novae, X-ray

bursts originate from binary systems that include a neutron star (or a black

hole) instead of the white dwarf. As material accretes on to the much denser

neutron star, this results in periodic bursts of X-rays from the impact of the

accreted material at very high velocities [16, 20].

2.2 Resonances and nuclear reaction rates

The burning process of the fuel in stars follow sequences of specific nuclear

reaction cycles such as the C-N-O, Ne-Na, Mg-Al and Si-P, cycles [21, 22],

shown in Figure 2.4. These cycles consist of proton capture reactions that

compete with β decays and are enclosed by (p, α) reactions. Breakout reac-

tions that link any two cycles are feasible due to (p, γ) resonant and direct

capture reactions. The time scale of novae depends on such (p, γ) reac-

tion rates. As mentioned above, these reactions can proceed via both non-

resonant and resonant capture reactions. For non-resonant reactions, the

incident proton can be represented by a plane wave, that interacts with a
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Figure 2.4: The Ne-Na, Mg-Al, and Si-P cycles. Figure is taken from [16].

target A, and directly populates a standing wave in a final compound nuclear

state B [23]. Similar to bremsstrahlung, in this process a photon is emitted

with energy Eγ = Ep +Q−Ei. Here Ep is the proton energy in the center of

mass frame, Q denotes the reaction Q-value, and Ei is any excitation energy

in the compound nucleus. The cross section for γ-ray production in such a

reaction is characterised by the matrix element [15]

σγ ∝ |〈B|Hγ|A+ p〉|2. (2.3)

In the above Hγ is an electromagnetic operator, which mediates the transition

from the initial |A + p〉 state to the final state B. Such capture processes

are governed by one matrix element, and hence called one-step or direct

reactions [15], as shown in Figure 2.5. This sort of (p, γ) reactions are non-

resonant reactions as they take place for all projectile energies. On the other
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Figure 2.5: A(X, γ)B direct capture reaction. Figure is taken from [15].

hand, a resonant (p, γ) reaction is a two-step process and is highly sensitive

to the incident proton energy. In these reactions the incident proton first

populates an excited state E0 in the compound nucleus. Later, the state

decays to a final excitation energy Ef , emitting a γ-ray. The probability for

such a reaction is the product of the matrix elements for these two steps [15]

σγ ∝ |〈Ef |Hγ|E0〉|2|〈E0|Hf |A+ p〉|2. (2.4)

In the above, Hf is an operator that acts on the initial state |A + p〉 and

creates an excited state E0 in the compound nucleus, while Hγ is an operator

that leads to the later γ decay. Because the reaction is governed by two

matrix elements, it is considered to be a two-step reaction (Figure 2.6). The

resonant reaction is sensitive to the projectile energy at the entrance channel.
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The total energy at the entrance channel Q+Ep must match the excitation

energy E0 in the compound nucleus for the reaction to occur [15]. The cross

section for such reactions maximizes near well defined resonances. The cross

section varies smoothly as a function of energy with intercepting resonances,

depending on the width of the states involved, as illustrated below.

Lets consider a deexcitation from an excited state with decay constant λ.

Figure 2.6: A(X, γ)B resonant capture reaction. Figure is taken from [15].

The decay process is described by the well known exponential decay law

N(t) = N(0) exp
(
− λt

)
, (2.5)

where, N(t) is the number of nuclei remaining in the excited state after a

time t and N(0) is the initial number of states at t = 0. The average time τ

to exist in the excited compound nuclear state before it decays is related to

the probability λ so that

τ =
1

λ
=
t1/2
ln2

, (2.6)

20



where t1/2 is the half-life of the state. We now focus on how to describe the

time evolution of this decaying state. In general, it can be described as the

stationary state solution

Ψ(t) = Ψ(0) exp
(
− iEt

h̄

)
, (2.7)

so that the probability of finding the particle is conserved

|Ψ(t)|2 = |Ψ(0)|2, (2.8)

However, to allow the state to decay, one requires the addition of a small

imaginary part to the energy, so that [1]

E = E0 −
1

2
iΓ, (2.9)

where the 1
2

factor is introduced for convenience. The above yields the prob-

ability

|Ψ(t)|2 = |Ψ(0)|2 exp

(
− Γt

h̄

)
, (2.10)

which agrees with the exponential decay law only if

Γ = λh̄. (2.11)

Therfore, the wave function of a decaying state can be correctly expressed as

Ψ(t) = Ψ(0) exp

(
− iE0t

h̄

)
exp

(
− Γt

2h̄

)
. (2.12)

Note, the wave function in the above equation is a function of time. Since we

aim to get the probability of finding an emitted particle (photon) with en-
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ergy E. This requires a Fourier transform from the ‘time’ domain to the ‘fre-

quency’ domain, so that

g(ω) ∝ Ψ(E) =
Ψ(0)√

2π

∫ ∞
0

dt exp

(
i(ω − E0

h̄
)t

)
exp

(
Γt

2h̄

)
, (2.13)

where the lower limit of the integration is set to zero assuming that the decay

started at t = 0. Since E0 = h̄ω0, this yields

g(ω) =
Ψ(0)√

2π

∫ ∞
0

dt exp

(
i(ω − ω0 + i

Γ

2h̄
)t

)
, (2.14)

whose solution gives us the amplitude

g(ω) =
Ψ(0)√

2π

[
i

ω − ω0 + iΓ
2h̄

]
. (2.15)

Therefore, the probability of emitting a particle with energy E should be

|g(ω)|2, so that

P (E) =
N

2π

h̄2|Ψ(0)|2

(E − E0)2 + Γ2/4
, (2.16)

where N is a normalization factor = Γ
h̄2|Ψ(0)|2 . This results in

P (E) =
Γ

2π

1

(E − E0)2 + (Γ/2)2
, (2.17)

which is called a Cauchy or Breit-Wigner distribution to describe the state,

shown in Figure 2.7. The width of this distribution Γ, is related to the mean

lifetime τ from Eq. (2.11) such that

Γτ = h̄. (2.18)

22



This relation shows that decaying states have widths and that broad states

have short lifetimes and vice-versa. Thus, the small complex energy term

that we added in Eq. (2.9) had two effects

• It allowed for transitions to other eigenstates.

• It led to a broadening of the state.

Figure 2.7: A Breit-Wigner distribution of width Γ. Figure is taken from [1].

Since the matrix elements in Eq. (2.4) are proportional to the probability of

creating a new state E0, and the probability for this state to decay to a final

state Ef respectively, the two process can be represented by partial widths

Γi for each process. Thus Eq. (2.4) can be rewritten as [15]

σγ ∝ ΓpΓγ. (2.19)

2.2.1 Relation to nuclear reaction rates

In general, the measurement of a nuclear reaction rate requires a knowledge

of the number of interactions between incident and target particles per unit
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volume per unit time. This is governed by the cross section σ of the reac-

tion. We now investigate the meaning of this cross section in more detail

using scattering theory, within a non-relativistic context. For simplicity we

assume a scattering process between spinless incoming particles and the tar-

get particles, with a central potential. The stationary state solutions to such

a problem can be described as

Ψ(~r) = Ψinc(~r) + Ψscat(~r), (2.20)

where Ψinc(~r) and Ψscat(~r) are the wave functions describing the incident and

the scattered particles respectively. It is well established that in the limit

r →∞, the solutions take the form

Ψinc(~r) + Ψscat(~r)
r→∞
= ei

~k.~r +
eikr

r
f(k, θ), (2.21)

where f(k, θ) is a modulating factor called the scattering amplitude. One

can then separate the incoming plane wave into a radial part and an angular

part (taking into consideration the azimuthal symmetry) so that ei
~k.~r = eikz,

and

eikz =
∞∑
l=0

(2l + 1)iljl(kr)Pl(cos θ) (2.22)

for all partial waves of orbital angular momentum l. The total wave function

can now be written as

Ψ(r, θ) =
∞∑
l=0

(2l + 1)iljl(kr)Pl(cos θ) + f(θ)
eikr

r

=
∞∑
l=0

blRl(kr)Pl(cos θ),

(2.23)
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which is further separated into radial and angular parts. Given the boundary

conditions (r → ∞), the solution to the radial part is simply the Bessel

function jl(kr) =
sin(kr− lπ

2
)

kr
[2]. Rl(kr) will have a similar form except with a

phase shift δl, so that Rl(kr) =
sin(kr− lπ

2
+δl)

kr
. Putting in the above explicitly,

and rearranging coefficients, we get

Ψ(r, θ) = eikr
[ ∞∑
l=0

{
(2l + 1)

2i
il e−i

lπ
2 − bl

2i
e−i

lπ
2 eiδl

}
Pl(cos θ) + f(θ)k

]
+ e−ikr

[ ∞∑
l=0

{
− (2l + 1)

2i
il ei

lπ
2 +

bl
2i
ei
lπ
2 e−iδl

}
Pl(cos θ)

]
= 0.

(2.24)

Equating coefficients on the LHS and RHS, one can obtain after some algebra

bl = (2l + 1)il eiδl . (2.25)

On back substituting this value, the scattering amplitude can be evaluated

as

f(θ) =
1

k

∞∑
l=0

(2l + 1)eiδl sin δlPl(cos θ). (2.26)

This scattering amplitude is an experimentally measurable quantity and re-

lates directly to the differential scattering cross section

dσ

dΩ
= |f(θ)|2, (2.27)

so that total cross section σ is

σ = 2π

∫ 1

−1

|f(θ)|2 . d(cos θ). (2.28)
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Using the orthonormality of the Pl(cos θ) we get this cross section to be

simply

σ =
4π

k2

∞∑
l=0

(2l + 1) sin2 δl. (2.29)

Clearly the scattering cross section is maximum when the lth partial wave

undergoes a phase shift of π
2
, from Eq. (2.29).

At this stage the cross section σ ∝ sin2 δl can also be expanded as

σ ∝ 1

1 + cot2 δl
. (2.30)

On Taylor expanding cot δl(E) about Ep = E0, we get

cot δl(E) = cot δl(E0) + (E − E0)

(
∂E cot δl

)
E=E0

+ . . . ,

=

(
−1

sin2 δl

dδl
dE

)
E=E0

(E − E0) + . . . .

(2.31)

Since we assume at the resonance δl(E0) = π
2
, the cot δl(E0) term in the

first line vanishes and −1
sin2 δl

= −1. Furthermore we can arbitrary define

(dδl
dE

)E=E0 = 2
Γ

so that the above equation can be rewritten as

cot δl(E) = − 2

Γ
(E − E0) = −(E − E0)

Γ
2

. (2.32)

Substituting the phase shift value into Eq. (2.29), we get

σ =
π

k2
(2l + 1)

Γ2

(Γ/2)2 + (E − E0)2
. (2.33)

Since the (p, γ) reaction is a two-step process (the creation of the state and

the later decay), the Γ2 in the numerator can be replaced by the product of

the two probabilities Γp and Γγ. Finally on incorporating spin and orbital
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angular momentum, the cross section is weighted with a statistical factor [16]

g =
(2J + 1)

(2l + 1)(2Sa + 1)(2Sb + 1)
, (2.34)

where J is angular momentum of the final state. Sa and Sb are the spins of

the incident and the target particles, and l is the transferred orbital angular

momentum. Finally we can get the value of the cross section for l = 0 (s-

wave scattering) to be

σ(E) = πλ̄2ω
ΓpΓγ

(Γ/2)2 + (E − E0)2
, (2.35)

with ω =

(
(2J+1)

(2Sa+1)(2Sb+1)

)
and λ̄ = h̄

P
= 1/k is reduced de Broglie wave

length. Clearly the above cross section depends on the energy of the projec-

tile (E = Ep) and maximizing at Ep = E0, the central value of the Lorentzian

distribution in Figure 2.7. Particles in a stellar environment in thermody-

namic equilibrium are distributed according to the Maxwell-Boltzmann ve-

locity distribution φ(v), given by [15]

φ(v) = 4πv2

(
µ

2πkT

)3/2

exp

(
− µv2

2kT

)
, (2.36)

where µ is the reduced mass of the projectile and target, k is the Boltzmann

constant and T is the stellar temperature. Consequently, the reaction rate

per particle pair can be found by integrating the reaction cross section σ(v)

over phase space, and considering above probability distribution, such that

〈σv〉 =

∫ ∞
0

dv σ(v) v φ(v), (2.37)
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v being the relative velocity between the particles. For non-relativistic par-

ticles, we have E = µv2

2
. Therefore the reaction rate can be rewritten as

〈σv〉 =

(
8

πµ

)1/2
1

(kT )3/2

∫ ∞
0

dE σ(E) E e−E/kT . (2.38)

Finally plugging in the energy-dependent cross section, the nuclear reaction

rate reduce to

〈σv〉 =

(
2π

µkT

)3/2

h̄2e−E/kTωγ, (2.39)

where we define γ = ΓpΓγ
Γ

and have used the fact that
∫∞
−∞ dx

a
(b−x)2+a2

= π.

2.2.2 The 31S(p, γ)32Cl reaction

From an astrophysical point of view, the 31S(p, γ)32Cl reaction rate is impor-

tant as it influences the duration of the Si-P cycle in explosive hydrogen burn-

ing environments. In particular, the reaction rate is important to understand

the anomalous abundance of sulphur in novae ejecta like the case in Nova

Her 1991 [24]. The abundance of other intermediate mass elements such as

neon in the Nova Her 1991 spectra reveals the presence of a massive ONeMg

white dwarf in a binary system, thereby classifying it as a ONeMg nova [25].

This indicates that the progenitors of the ejecta are mainly oxygen, neon and

magnesium. However, the optical spectrum shows a strong sulphur line and

this enhancement, shown in Figure 2.9, is still unexplained [24].

According to the present stellar models, the temperature range in ONeMg no-

vae is approximately 0.1 GK ≤ T ≤ 0.3 GK [26]. In these conditions, the

31S(p, γ)32Cl break out reaction is feasible due to three low-lying resonances

in the compound 32Cl nucleus [27], namely at 1738, 2131 and 2209 keV respec-

tively. These are shown in Figure 2.10. Currently there exist discrepancies
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Figure 2.8: Si-P burning cycle.

in the estimation of the reaction rate, which, as shown in Eq (2.39), depends

exponentially on the resonance energy. It is therefore natural to expect that

these discrepancies are due to differences in past measurements of the res-

onance parameters. This assumption is validated by recent high precision

measurements of the astrophysically relevant excitation energies in 32Cl that

have disagreed with one another by close to 3 standard diviations [28, 29].

Recently it was pointed out by Wrede et al. [30] that the possible reason for

the discrepancy between the two highest precision measurements could be

due to potential problems with detection thresholds set by one (that used

the Yale split pole spectrograph [28]) compared to to the other (that used

the Q3D spectrometer in Munich [29]). This hypothesis was supported by
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Figure 2.9: Time snapshots of Nova Her 1991 optical spectrum. The sulphur
lines with λ = 9069 Å are strongly populated during the period from May-
October 1991. Figure taken from [24].

an independent measurement of some of the γ-ray energies from transitions

in 32Cl, following 32Ar β decay [31]. Most recently, a high-resolution γ spec-

troscopy experiment was preformed using a Gammasphere array at Argonne

National Laboratory [32] to investigate this further and remeasure the reso-

nance energies for all the astrophysically relevant states in 32Cl.

In this work we independently investigate the possibility of remeasuring the

energies of the relevant states in 32Cl using the 32S(3He, t)32Cl reaction with

the K600 magnetic spectrometer. Additionally, we look into the feasibility of

measuring Γp, the proton widths of the state of interest using a segmented Si

array called CAKE [33]. We also develop a procedure to make other similar

future measurements that are relevant for novae nucleosynthesis.
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Figure 2.10: Energy levels in 32Cl. The 31S(p, γ)32Cl break out reaction is
feasible due to the resonances marked in red.
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Chapter 3

Experimental set-up and

techniques

As mentioned previously, we produced the relevant states of interest in 32Cl

using the 32S(3He, t) reaction. The Q value for this reaction is ≈ -13 MeV.

The experiment was preformed at the iThemba LABS cyclotron facility with

the high resolution K600 magnetic spectrometer [34] operating in 0◦ mode.

This unique arrangement made our measurement sensitive to low angular

momentum transfers which was ideal, as we were interested in populating

low spin states. Simultaneously, we used a position sensitive silicon detector

array called CAKE (Coincidence Array for K600 Experiments) [33] that was

located in the scattering chamber and mounted at backward angles with

respect to the beam. The main purpose of the CAKE array was to detect

unbound protons from excited states in 32Cl.

Our experiment used an incident beam energy of 50 MeV that was delivered

to the K600 scattering chamber. A schematic of the K200 separated-sector

cyclotron (SSC) facility of iThemba LABS is shown in Figure 3.1. I describe

the rest of the experimental set up below.
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Figure 3.1: SSC facility at iThemba LABS, Figure taken from [35].

3.1 Target preparation

In general, sulphur targets are difficult to make, due to the high vapour

pressure and low melting points of elemental sulphur. Due to this property,

sulphur targets sublimate is vacuum as they get bombarded by an accelerated

ion beam. Therefore, is is preferred that S targets are prepared by depositing

a compound on a solid backing [36]. This is done by placing a sulphur

compound in a vacuum chamber and thermally evaporating it on the backing,

as seen in Figure 3.2. Similarly, enriched S targets can also be made in

compound form. For this experiment we made both natural and enriched

targets. The latter were made using 99.99% enriched 32S powder, following

the method suggested by Watson [37]. In this procedure the 32S powder

was placed on a ceramic plate placed ∼ 10 mm away from a 300µg/cm2 Ag

foil. The Ag foil was placed at a constant temperature of 150◦ C. Next the
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temperature of the Pt boat was raised to ∼ 200◦ C. The sulphur vaporizes at

this temperature and form a uniform layer of AgS on the foil. This method

has the advantage that the high affinity between silver and sulphur makes

the compound formation highly favourable. Also silver is an unreactive metal

and hardly reacts with air. We also made ZnS targets with thickness of ∼

150µg/cm2, where ZnS material with natural sulphur was evaporated in 12C

backing using the thermal deposition method. The chamber used for making

the targets is shown in Figure 3.2.

Figure 3.2: Vacuum chamber used for thermal evaporation of ZnS.
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3.2 The magnetic spectrometer

A schematic of the K600 spectrometer is shown in Figure 3.3. It consists of

one quadrupole Q and two dipole magnets, D1 and D2. The quadrupole fo-

cuses the beam vertically and the dipoles are used for momentum dispersion.

The K and H trim coils shown in the picture are used to focus the ejectiles at

the focal plane [35]. The spectrometer acceptance angle of 3.5 msr is defined

by a collimator positioned upstream from the quadrupole.

Since charged particles enter the spectrometer in a perpendicular direction

Figure 3.3: K600 spectrometer at iThemba LABS, Figure taken from [35]

to the magnetic field then, it follows that

qvB =
mv2

r
=⇒ rB =

p

q
= ρ, (3.1)
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where B, is the magnetic field, r is the radius of the curvature of the particles,

and we define ρ to be the rigidity, the ratio of momentum to charge for a

given ejectile. From Eq. (3.1) it is obvious that the rigidity of a particle is

proportional to the radius of curvature in a fixed magnetic field. Therefore,

there is a unique radius of curvature associated with the particle’s rigidity.

Alternatively we can also define an energy constant K = 2mE
q2 , so that

ρ =
√

2K. (3.2)

According to the above equation, two different particles with the same en-

ergy constants can have the same rigidity, and consequently hit the same

position on the focal plane. However this problem can be solved by particle

identification using the time-of-flight (TOF) and energy loss properties to

distinguish between particles for different charge and mass. This method is

discussed in further detail in the following sections.

In a typical spectrometer experiment, the charged particles exit the second

dipole D2 through a kapton window to a position-sensitive focal plane detec-

tor placed at an angle of 35.75◦ with respect to the beam axis. The distance

from the target to the focal plane in roughly 8 m. Since the focal plane de-

tector are mounted on air, the ejectile has to travel through both the kapton

window and air before passing through the focal plane. This sets certain

restrictions on particle detection energies.

3.3 Focal plane system for the K600

The focal plane detection system for the K600 spectrometer consists of two

components (Figure 3.4)
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• The Vertical Drift Chamber (VDC): To track the particles’ trajectory

in the focal plane.

• A plastic scintillator, which is used to generate event triggers and for

particle identification.

Figure 3.4: Schematic representation of focal plane detector [38]. This picture
shows two VDCs and scintillator paddles unlike our set up.

3.3.1 The vertical drift chamber (VDC)

The VDC contains a set of wire planes mounted inside a gaseous medium.

It is used to track the trajectories of the ejectiles. When an ejectile traverses

the VDC, its ionizes the gas atoms and produces electron-ion pairs. The free

electrons start to drift towards the corresponding signal wire and eventually

initiate avalanches. The direction of the drift is used to reconstruct the

ejectile trajectory; and provide the ejectiles’ focal plane position. Together,

the focal plane position information and the reaction kinematics calibrate

the focal plane spectrum to determine the corresponding recoil’s excitation
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energy. The VDC is made of four components that are described briefly

below (see Figure 3.5).

Figure 3.5: VDC top view. The blue part is composed of Stesalam EP107-
M950-40 which is a glass fibre and epoxy composite used for isolation. The
brown components are composed of aluminium. The wires are mounted
inside the red regions which indicate the printed circuit boards (PCB). The
dimensions displayed on the left are in millimetres.

Mylar windows

Mylar windows are used to isolate the VDC internal parts from atmosphere

and they additionally help in reducing the background. They are made of

biaxially-oriented polyethylene terephthalate (BoPET) polymer [35].
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High-voltage planes

The VDC contain three high-voltage planes that divide the VDC into X and

U wire chambers, as shown in Figure 3.6. The high-voltage planes control

the ionization processes that take place in the VDC. For a relatively high

potential, the VDC operates in the Geiger-Müller mode, while at lower volt-

ages, it operates in ordinary ionization mode. In the ordinary ionization

mode, the freed electrons themselves trigger the signal wire. However, in the

Geiger-Müller mode, because of the relatively high voltage applied, the ac-

celerated electrons collides with other gas atoms and liberate more electrons.

The newly ionized electrons are also accelerated, this leads eventually to an

electric cascade called the Townsend avalanche [39]. This effect prevents us

from accurately deducing the energy deposited by the ejectiles since the col-

lected signal results from several electron cascades. However, this regime can

be useful for the case of detecting low energy ejectiles. Therefore, in our ex-

periment the VDC was operated in ordinary ionization mode, with the high

voltage set at -3.56 keV.

The wire planes

The X and U wire planes are placed inside the gas chamber. The X wire

plane consist of 198 signal wires and 201 guard wires. The U wire plane on

the other hand consists of 143 signal wires and 146 guard wires [35]. All wires

are made of gold plated tungsten. These wires serve the following functions:

• The signal wires create an electric field gradient to drift the ionized

electrons towards them. This leads to avalanching close to the signal

wire. The wires are connected to pre-amplifiers which then pass the

signals to Time to Digital Converter (TDC) modules of the K600 data

acquisition system.
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Figure 3.6: VDC top view. The signal wires are represented by red and blue
circles. The blue ones correspond to wires within active cells. The guard
wires represented by black dots. The bluish gradient in the active cells is to
mimic the electron avalanches near the signal wires.

• The guard wires are evenly interspersed amongst the signal wires. They

are set at a voltage of roughly 500 V. This configuration creates an

active cell for each signal wire. The active cell border defined by the

guard wires potential together with the high voltage planes potential

is shown in Figure 3.6. This configuration also prevents the electrons

from the cross-cell drifting.

The X wires are mounted vertically to the horizontal plane, to gives horizontal

position information about the ejectile. The U wires are tilted at 50◦ to the

horizontal plane and give both vertical and horizontal information.
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The gaseous medium

The gaseous medium of the VDC is filled with 90% Ar gas and 10% of

CO2 which works as a quenching gas. The latter is used because sometimes

the energy deposited by the traversed particle is not enough to ionize gas

atoms. Such a situation would rather excite the atom, which eventually de-

excites and emits photons, which in turn could liberate electrons in a different

positions resulting in a fake signal. The CO2 quenches the phenomenon by

absorbing the photon energy.

VDC operating mechanism

Ionized electrons inside the VDC’s wire planes drift toward the signal wires

to create avalanches in their vicinity and eventually induce electrical signals.

The signal generated is processed by pre-amplifiers and passed to the Data

Acquisition System (DAQ). The ejectiles’ positions are inferred by measuring

the average drift times of the electrons with respect to the triggering times

of the scintillator paddles. This information is used to obtain the average

drift distance covered by the ionized electrons towards the signal wires. In

this configuration of the VDC’s wire planes, the maximum distance between

any of the high voltage plane to the wire plane is 8 mm.

3.3.2 Plastic scintillator

A plastic scintillator paddle was used to trigger the DAQ and to generate

particle identification spectra. It is made of BC-408 plastic scintillator ma-

terial and wrapped in aluminised mylar [40]. The paddle is connected to

two photomultiplier tubes (PMTs), mounted vertically at both ends. The

scintillation signals were amplified by the PMTs, and further passed to the
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Figure 3.7: Plastic scintillators at the K600.

DAQ. This scintillator was also used for particle identification (PID), using

the TOF, which is the time between the radio frequency of the cyclotron (RF)

and the event trigger time at the paddle. This PID procedure is a highly

sensitive method to gate on the ejectile channel, it can separate different

particles with equal rigidities and even subtract background.

3.4 Coincidence Array for K600 (CAKE)

The coincidence array for K600 (CAKE) shown in Figure 3.8, is composed of

five MMM-type double-sided strip silicon detectors (DSSSD). It was manu-

factured by Micron Semiconductor Ltd[33], for use with the K600 spectrom-

eter to allow detection of charged particles ejected by the recoiling nuclei in
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the scattering chamber. CAKE is mounted at backward angles to minimize

the risk of radiation damage. CAKE, is positioned to cover angles ranging

from 115◦ to 165◦ with respect to the beam axis, yielding a total efficiency

of 25% coverage of the solid angle. The p-side of the MMM-type DSSSD is

composed of 16 rings while the n-side is divided into 8 sectors, as seen in

Figure 3.9.

Figure 3.8: (Left) The scattering chamber with CAKE mounted at back-
ward angels while the beam enters from the right direction. (Right) CAKE
geometry, Figure is taken from [33].
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Figure 3.9: A schematic of the DSSSD.
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Chapter 4

Analysis

For the experiment we collected ∼ 44 hours of 32S(3He, t) data using both

the focal plane detectors and CAKE, with the K600 data acquisition system.

These data were analysed using the ROOT software. I describe the analysis

procedure below.

4.1 CAKE energy calibration

Prior to the experiment, a 228Th calibration source was used for calibrating

the CAKE array. This is because the decay of 228Th yields well defined α-

peaks from the decay chain as shown in Figure 4.1. Figure 4.2 shows the ADC

signals collected with CAKE and the 228Th source mounted on the target

frame of the K600 scattering chamber. As evident in Figure 4.1, one would

expect at least 6 intense α peaks in the CAKE spectrum, for each individual

strip, within the energy range 5.2 MeV ≤ Eα ≤ 8.7 MeV. Some of these

peaks would be closely spaced to one another (appear as doublets). However

these would be difficult to identify, considering the energy resolution of the Si

detectors, which have a full width of half maximum (FWHM) ≈ 100 keV as

45



Figure 4.1: The 228Th decay chain.

shown in Table 4.1. In such a scenario it is not unreasonable to fit a doublet

as one individual wide peak, with the FWHM as a free parameter.

Our first step for the energy calibration of CAKE was to fit the individual

α spectra in each of the 120 strips (8 sectors and 16 rings for 5 DSSSDs) for

the CAKE array. This was preformed using pure Gaussians as fit functions

on a flat background. The peak centroids, FWHM and peak areas were

free parameters. The energy calibration for each of these 120 spectra were

preformed using the coefficients of a linear regression

E(i) = ai + bi(Xi), (4.1)

where the Xi are the peak centroids, and ai and bi are the offsets and the gains

respectively. This calibration procedure allowed us to add gain-matched sig-

nals from each of the 120 channels into a summed CAKE spectrum. This is

highlighted in Figure 4.2, which shows an uncalibrated 2 dimensional spectra

from CAKE, obtained using 12-bit CAEN ADCs (4096 channels on the hor-

izontal axis). The 5 DSSSDs in the array are grouped in such a manner that

each horizontal band in the 2D histogram corresponds to 24 channels from
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Figure 4.2: Top panel: Representation of uncalibrated ADC signals from
CAKE. Each channel in the figure corresponds to one of CAKE’s 80 rings
(p-side) and 40 sectors (n-side). Bottom panel: Projected (uncalibrated)
ADC spectrum.

each detector (for 8 sectors and 16 rings). The first DSSSD is divided into

two groups of 8 + 16 ADC channels as shown in Figure 4.2. The results of

the gain-matching are apparent in Figure 4.3, where clearly distinct α-peaks
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Figure 4.3: Calibrated α spectrum with CAKE.

from Figure 4.1 are identified in the lower panel. Finally, since we expect to

detect low energy protons with CAKE, thresholds for the DSSSDs adjusted

to the lowest possible values above the noise. The energy resolution achieved

in the gain matched α spectrum from CAKE is shown in the table below.
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Table 4.1: The FWHM’s of α peaks that measured by the DSSSDs.

Eα (keV) FWHM (keV)

5423 121
5685 93
6051 116
6288 93
6778 99
8788 100

4.2 Particle identification (PID) and focal plane

calibration

The focal plane singles spectrum is affected by factors such as the quality

of the beam, contamination in the target(s), beam induced background and

the multiple scattering of the charged light ejectiles. Since the 3He beam

induces several other reactions such as (3He, d), in addition to the (3He, t)

reactions of interest, other ejectiles with same rigidity will be detected at the

focal plane. To avoid such contamination, the scintillator paddle at the focal

plane was used to identify the tritons, in order to obtain a clean spectrum

corresponding to 32Cl excited states. To achieve this, we used the energy

deposited in the paddle and the time of flight (TOF) of the ejectiles for

particle identification. The TOF can be estimated by calculating the flight

time of the ejectile from the target to the paddle, so that

TOF =
d

v
, (4.2)

where d is the flight distance within the spectrometer (which varies from

7.78 m to 8.87 m in the medium dispersion mode). The relativistic velocity
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v in Eq. (4.2) is simply

v = c

√
1−

(
m

E

)2

, (4.3)

where m and E are the mass and the energy of the ejectile.

This was obtained using the trigger signal from the paddle which was fed

into a time-to-digital converter module (TDC) and used as a time reference.

Simultaneously, the RF time signal from the cyclotron was also registered

with the TDC. The time difference between the RF signal and trigger from

paddle provided a relative measurement of the ejectiles’ time of flight. From

the reaction kinematics (described in the next section), we estimate the ki-

netic energy of the tritons to range between 31 MeV to 36 MeV. Thus, using

the energy deposited on the paddle and the relative TOF, we can identify the

triton and the deuteron groups shown in the right panel of Figure 4.4, that

arise from (3He, t) and (3He, d) reactions respectively. Before generating the

final spectrum by gating on the triton group, it is also imperative to have an

understanding of the beam induced background on the PID spectrum. This

is obtained using an empty frame (with no target), whose PID spectrum is

shown in Figure 4.4. Since there was a considerable background continuum

in our region of interest of the PID spectrum, we added another 2 dimen-

sional gate on the energy deposited at the paddle as a function of the focal

plane position, shown in Figure 4.5. The application of this additional gate

ensured a more stringent selection of triton events, as shown in Figure 4.6.

The effect of the application of these PID gates on the focal plane position

vs TOF spectrum is illustrated in Figure 4.7.
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Figure 4.4: Energy deposited at the paddle as a function of relative time-
of-flight (TOF). Left panel: Focal plane events corresponding to an empty
target frame. Right panel: Focal plane events collected using a AgS target.

4.2.1 Focal plane energy calibration

We performed an internal energy calibration for the focal plane using known

excited levels in 32Cl [41]. In order to do that, we first started with a rough

calibration so that we could correctly identify the peaks of interest. For

this we used a relativistic kinematics code (called SPANC), which was de-

veloped by the Wright Nuclear Structure Laboratory at Yale University [42].

As shown in Figure 4.8, SPANC estimates the relative focal plane positions

for different ejectiles from various nuclear reactions, based on their rigidity.

Additionally, this code is also useful to identify potential contaminants from

reactions on the backing material and other impurities in the target. For

example, in this experiment we used a silver foil as a backing in one target

and for the second we had ZnS compound evaporated on a carbon backing.

Furthermore, as also seen in Figure 4.9, the SPANC predictions show that

we expect to see some contamination from oxygen impurities in the target,
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Figure 4.5: Paddles’ energy as a function of the focal plane positions, the
lower band represents triton events. This is because the Q value for the
(3He, t) reaction is much more negative than 32S(3He, d) reaction.

corresponding to 424 keV and 721 keV excitations in 16F. Also, tritons cor-

responding to the 12N ground state also fall in the region of interest. This is

highlighted in Figure 4.10, which shows that the 12N ground state is strongly

populated with the ZnS target, due to reactions on the 12C backing material.

After confirming the excitation energies above, we are in a position to per-

form an internal calibration. The calibration procedure is explained below.

Since the K600 is essentially a momentum spectrograph, it is more accu-

rate to perform the calibration using the ejectile momenta Pt, rather than

ejectile energies. In order to achieve this we used a relativistic kinematics

code to reconstruct the ejectile momenta Pt(i) using the known excitation

energies Ex(i) of the recoiling 32Cl∗ nuclei. Next, we calculated P ′t(i), which

are the triton momenta corresponding to a 1σ shift in the known energies,
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Figure 4.6: Paddle energy as a function of TOF after the PID gate on tritons
is applied.

with E ′x = Ex + ∆Ex. The intrinsic statistical uncertainties ∆Pt(i) is then

determined from the absolute value of the difference between these numbers,

∆Pt(i) = |(Pt(i) − P ′t(i)|. These triton momenta were used together with

focal plane positions to extract calibration coefficients. For this, we first ob-

tained the centroids of each peak in the focal plane spectrum. These were

obtained using a Levenberg Marquardt χ2 minimization routine, that used

a lineshape function which was a convolution of a Gaussian with low energy

exponential tails, on flat background [43]. The resulting fits for the relevant

32Cl peaks are shown in Figure 4.11 and listed in Table 4.2.

The extracted peak centroids and their corresponding momenta are finally

used to obtain an energy calibration using the quadratic regression

P (i) = a0 + a1xpos(i) + a2x
2
pos(i). (4.4)
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Figure 4.7: Top panel: Raw focal plane spectrum from AgS target. Bottom
panel: Triton spectrum generated with the correct PID gates. The peak
marked by an asterisk is a potential source of isospin mixing to the T = 2
IAS leading to the violation of the IMME.

To obtain the above coefficients and their associated errors, a chi squared

minimization was performed with respect to each parameter using ∂χ2

∂aj
= 0

where j = 0, 1, 2. For this we used a fitting routine within ROOT that

employs the effective variance method. Using this method, the chi squared

for each data point Pt(i) value is defined as [44]

χ2 =
Pt(i)− P (i)

∆P 2
t (i) + (∆xpos(i)∂xP (i))2

. (4.5)
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Figure 4.8: Rough calibration for the triton focal plane spectrum using
SPANC. All energy units are in MeV.

Figure 4.9: SPANC output: The first group represents the focal plane posi-
tions of tritons corresponding to 32Cl excitations. Relative focal plane posi-
tions for tritons from different nuclear reactions are illustrated in the other
levels. The dashed area illustrates the focal plane region of interest for this
work. The other reactions are shown due to the possibility of their presence
as contaminations in the targets. All energy units are in MeV.
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Figure 4.10: Comparison of triton spectra obtained from the two targets.
In the ZnS spectrum that is shown in red, the 12N ground state is strongly
populated as expected.

The routine starts with initial guesses for the parameters and searches for a χ2

minimum for a given parameter. The procedure is then repeated for each pa-

rameter, until a stable minimum for the χ2 value is obtained, yielding the co-

efficients aj and their associated uncertainties ∆2
coeff (j) =

√∑
j a

2
j + cov(j),

where cov(j) are the covariances.

Therefore, the uncertainty in the momentum of an unknown peak with cen-

troid Xpos is simply

∆P =

√( ∂P
∂xpos

)2
∆x2

pos, (4.6)

which yields

∆P =
√

(a1 + 2a2xpos)2∆x2
pos. (4.7)
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Figure 4.11: Fitting of the tritons focal plane centroids.

The total uncertainty, including the uncertainty contributions due to aj is

then

∆Pt =
√

∆P 2 + ∆2
coeff . (4.8)

The above procedure allows us to extract the values of unknown excitation

energies within the region of interest, by plugging the triton momentum
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Table 4.2: Experimental excitation energies, ejectile momenta and triton
peak centroids for the 32S(3He, t) spectrum at the focal plane (with the AgS
target).

Eexp (keV) xpos (mm) ∆xpos (mm) Pt (MeV) ∆Pt (MeV)

1168.55 (13) 686.92 0.16 451.29 0.01
2859 (4) 464.49 0.08 440.30 0.02
3055 (5) 439.50 0.09 439.01 0.03
3165 (4) 425.55 0.12 438.28 0.02
3694 (4) 356.48 0.23 434.76 0.03
4079 (4) 306.44 0.14 432.18 0.03
4352 (5) 269.27 0.34 430.34 0.03
4581 (6) 240.26 0.26 428.79 0.04

values for unknown peaks (obtained from the fit) back into the kinematics

code. The resulting excitation energies for all identified peaks are listed in

Table 4.3 and shown in Figure 4.12. The singles data clearly shows a

Table 4.3: Experimentally determined values of the 32Cl excitation energy
values obtained from the calibration fit. Note that the observed state in the
last line is not reported in the literature [41]. This is a potential source of
isospin mixing as described later in this thesis.

Eexp (keV) Efit (keV) ∆Efit Residuals

1168.55 (13) 1168.48 1.25 0.06
2675 (5) 2676.90 3.88 0.38

2131.1 (0.4) 2130.42 2.55 0.26
2859 (4) 2864.34 0.62 8.61
3055 (5) 3055.50 0.66 0.10
3165 (4) 3162.14 0.90 3.17
3694 (4) 3691.06 1.80 0.73
4079 (4) 4074.58 1.08 1.10
4352 (5) 4359.60 2.60 1.52
4581 (6) 4582.15 1.97 0.19
4796 (10) 4799.20 6.83 0.32

? 4982.92 2.02 ?

previously unknown peak corresponding to an Ex = 4983(3) keV that is not
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Figure 4.12: Labeled focal plane spectrum with both known and unknown
excitation states in 32Cl nucleus. Note the peak at 4983 keV, is ∼ 63 keV
below the T = 2 IAS in 32Cl. This is potentially the source for isospin
admixture that cause the IMME violation.

listed on the ENSDF database [45]. It is highly likely that this is the source

of isospin mixing that could contribute to the IMME violation for the A =

32, T = 2 quintet. Unfortunately the ZnS target shows a large contaminant

peak from 12C(3He, t) in this region of interest, which makes identifying this

4983(3) keV peak impossible from the singles spectrum. However, since the

ground state in 12N is bound, this background is easily removed from triton-

proton coincidence described below.

We can identify the tritons that are associated with proton decay events

detected in CAKE. This is done by generating a 2D-histogram of the focal

plane events versus the energy deposited on CAKE, and applying a gate on

the proton groups shown in the top panel of Figure 4.13. Since the triggers

are from the paddle detector, the application of this gate projects the tritons

in the focal plane spectrum that correspond to only valid charged particle

events in CAKE. An overlay of the CAKE-coincidence and singles focal plane
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spectra is also shown in Figure 4.13. In principle the proton branching ratios

and angular distribution can be obtained from these coincidence data, so that

one can obtain the 31S(p, γ) reaction rate as well, in addition to affirming the

spin and parity of the isospin admixed state at 4983 keV. More detailed

explanation is presented in sections 4.4 and 4.5.

Figure 4.13: Top panel: A 2D-histogram of CAKE energy vs the focal plane
position. The marked diagonal in the 2D-histogram highlights proton groups
which are used to generate coincidence events. Bottom panel: The upper
spectrum is the singles spectrum and the lower one is the proton coincident
focal plane spectrum.

4.2.2 Other systematic effects

The K600 spectrometer operating in 0◦ mode has an angular acceptance

range of −2◦ to 2◦ in the laboratory frame. This could affect the resolution
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at the focal plane due to differences in the incoming angles of the scattered

ejectiles. However this effect can be corrected for by plotting the entrance an-

gle for the ejectiles as a function of the focal plane position and performing a

linear correction to improve the spectrum resolution, as shown in Figure 4.14.

In our experiment, we did not observe an explicit angular dependency on the

Figure 4.14: Triton focal plane entrance angles as a function of focal plane
position. The selected locus corresponds to the 2859 keV state in the recoil.

resolution. This was most likely due to the dominant effects of triton energy

losses within the target. A quick calculation confirms this assumption. For

instance, tritons from the 2859 keV state in 32Cl have kinetic energies in

the range of 34.23 MeV ≤ Et ≤ 34.29 MeV for the two extreme emittance

angles of −2◦ and 2◦. This energy difference ∆Eθ ∼ 4.8 keV is less than the

energy loss for the tritons in the AgS target. We calculate the latter from the
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Stopping and Range of Ions in Matter software (SRIM) [46]. The energy loss

determination was from interpolated SRIM values as shown in Figure 4.15.

The interpolation procedure used a code that iterated the energy loss over

Figure 4.15: Triton energy loss in the AgS target as a function of the triton
energy. The values are taken from SRIM with a conservative estimate of 10%
relative uncertainty.

infinitesimal slices of target material. We extract the energy loss for the

tritons from the 2859 keV state in the target to be ∆ETarget ∼ 6.6 keV.

4.3 Reaction and decay kinematics

We implemented a computer program to relativistically calculate the kine-

matics for the 32S(3He, t)32Cl reaction, taking into consideration also the

kinematics of the 32Cl∗ proton-decay to a 31S residual nucleus. The former

follows the Oak Ridge National Laboratory kinematics code [47], whose al-

gebra is briefly described below.

62



The Einstein’s energy-momentum relation using natural units (i.e. c = 1)

reads

E2 = P 2 +m2, (4.9)

where E is the total energy, P is the momentum and m is the rest mass of a

particle. Since we know the projectile and the target rest masses and kinetic

energies, we can find the total energy of the ejectiles from the equation [47]

E2 =
1

E2
T − P 2

0 cos2 θ2

{
ET

(
m1E0 +

m2
0 +m2

1 +m2
2 +m2

3

2

)
±P0 cos θ2

[(
m1E0 +

m2
0 +m2

1 +m2
2 +m2

3

2

)2

−m2
2m

2
3 − P 2

0m
2
2 sin2 θ2

]1/2}
,

(4.10)

where the indices 0,1,2 and 3 denote the projectile, target, ejectile and recoil

respectively. Here, ET = E0 +E1 = E2 +E3 is the total energy of the system.

Note that Eq. (4.10) above can have two solutions. The outcome is governed

by the quantity

α =
P0

ET

1 +
m2

2−m2
3

E‘
T{[

1−
(
m2+m3

E‘
T

)2][
1−

(
m2−m3

E‘
T

)1/2]}1/2
, (4.11)

where, E
′
T =

√
m2

0 +m2
1 + 2m2

1E0, is the total center of mass energy. If

the quantity α is greater than 1, then two solutions are allowed for the

scattering angle θ2, and if α < 1, only the positive sign term in Eq. (4.10) is

a physically realistic solution [47]. Once we solve for the ejectile energy E2,

it is straightforward to find the recoil energy E3 = ET − E2.

For the additional scenario where the recoil undergoes proton emission, we

need to take into consideration that the recoil emits a proton while it is
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in flight. With such an in-flight decay mode, the detected energy of the

protons will be further lowered in the laboratory frame, as the CAKE array

is positioned at backward angles in our measurement. This is illustrated in

Figure 4.16. We can deduce the lab energy of the protons using the following

Figure 4.16: The decay of the recoil nuclease in the center of mass (CoM)
and laboratory frames (Lab) of reference.

approach. In the rest frame of the 32Cl∗ recoil, prior to proton emission, the

4-momentum of the recoil is P3
′

= (m3,~0), separated by the space and time

components. After the break up of 32Cl∗ to 31S +p (say in the ground state),

the 4-momenta of the protons are P
′
p = (E

′
p,
~p′
p) and those of the residual 31S
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nuclei are Pres = (E
′
res,

~p′
res). The invariant mass of any particle is given

by E2 − P 2 = M2. Momentum conservation requires that ~p′
p = −~p′

res.

Furthermore, we also have

P
′

3 = P
′

p + P
′

res. (4.12)

We can then rewrite the above as

P
′

res
2 = (P

′

3 − P
′

p)
2 = P

′

3
2 + 2P

′

3.P
′

p + P
′2
p , (4.13)

which yields

m2
res = m2

3 − 2m3E
′

p +m2
p =⇒ E

′

p =
m2

3 +m2
p −m2

res

2m3

, (4.14)

and

E
′

res =
m2

3 +m2
res −m2

p

2m3

. (4.15)

Substituting the above into Eq. (4.9), we get

p
′

p =

√
(m2

3 +m2
p −m2

res)
2 − 4m2

pm
2
3

2m3

, (4.16)

similarly

p
′

res =

√
(m2

3 +m2
res −m2

p)
2 − 4m2

resm
2
3

2m3

. (4.17)

Now lets assume that the beam and the 32Cl recoil are along the +ẑ direction

as shown in Figure 4.16. Then the proton emission would occur in the xy

plane. If the protons are emitted at an arbitrary angle of θcm to the direction

of motion in the rest frame of the 32Cl nucleus, the longitudinal and transverse
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momenta for the protons are simply

p
′

p⊥ = p
′

p sin θcm, (4.18)

and

p
′

pz = p
′

p cos θcm. (4.19)

The latter value can be transformed to the laboratory frame by a Lorentz

boost

ppz = γ(p
′

pz + vE
′

p), (4.20)

with γ = E3

m3
and v = P3

E3
. Similarly,

Ep = γ(E
′

p + vp
′

pz). (4.21)

4.4 Coincidences between CAKE and the fo-

cal plane events

Particles detected in CAKE are defined by a unique pair of a triggered ring

and sector, that together define a pixel, as shown in Figure 4.17. Furthermore,

when ejectiles are detected at the focal plane, signals from the scintillator

paddle trigger the K600 DAQ-system to acquire data. The paddle also gen-

erates an ∼ 6 µs-wide ADC gate signal. Consequently, for the coincidences

to occur, the CAKE energy signals fed to the ADCs must also be regis-

tered within this time period. However, this time window is long enough

that uncorrelated events could be triggered on multiple rings and sectors in

CAKE. Such scenario leads to a wrong position information registered on the

DSSSDs. Furthermore, if a particle is incident on CAKE in the vicinity of
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Figure 4.17: A schematic of one DSSSD of CAKE. The particle hits the
DSSSD at the yellow pixel and triggers the channels of ring 9 and sector 4.

the inter-strip regions in the DSSSD (see Figure 4.17), it would also trigger

a neighbouring pixel. To avoid this, we implemented a restriction rule in the

data sorting code to select valid events to be accepted only if

∣∣∣ 16∑
pixel=0

Ering −
8∑

pixel=0

Esector

∣∣∣ < 300 keV. (4.22)

The above implies that the energy difference by a valid event in a whole

ring
∑
Ering and sector

∑
Esector must not exceed 300 keV. This condition

eliminates events from multiple hits on a ring or a sector. The effects of this

restriction rule are shown in Figures 4.18 and 4.19.
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Figure 4.18: Left panel: Counts in the rings as a function of the energy
difference between the sector and the ring pair. Right panel: Sector counts
as a function of the energy difference between the sector and the ring pair.

Figure 4.19: Ering vs Esector, with the restriction rule from equation (4.22)
applied.
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4.5 Angular distribution of the protons

As mentioned previously, the total angular momentum and the parity (Jπ) of

proton-unbound states can be determined by the angular distribution of the

decay protons in CAKE. Furthermore the measured proton branches from

astrophysically relevant states in 32Cl would allow an independent determi-

nation of the 31S(p, γ) reaction rate. However, a realistic estimation of the

proton branches (and hence Γp) can only be made if the angular distribution

of the protons is incorporated in the calculation. Unfortunately, as seen in

Figure 4.13, the proton yields measured by our experiment were too low to

perform such an analysis for this particular case. Nevertheless, below we de-

velop the algebra for such angular distribution measurements, which would

be useful for future similar investigations. Since the spectrometer was config-

ured to acquire data in the zero degree mode, with the ejectiles detected at

−2◦ to 2◦ acceptance angle, one can use γ-ray angular correlation techniques,

developed by Litherland & Ferguson and denoted by Method II [48], which

we describe below.

Assume the (3He, t) reaction to produce a final state in 32Cl (with spin and

parity Jπ), which further undergoes proton emission, leaving the residual 31S

nucleus in the ground state. This is shown in Figure 4.20. The incoming

channel spin for the reaction is easily obtained from a vector addition of the

spins of the 3He projectile and the 32S target

Sprojectile ⊗ Starget. (4.23)
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Figure 4.20: Incoming and outgoing channel spins for 32S(3He, t)32Cl∗(p).

Similarly, for the outgoing channel spin, where the 32Cl recoil decays to

31S + p, the spin coupling is

Sresidual ⊗ Sproton. (4.24)

This restricts the incoming channel spin to 1
2

and the outgoing channel spin

to either S = 0+ or S = 1+. From the above, the state labelled by |Jπ〉 in the

32Cl nucleus can only be formed by the addition of the angular momentum of

the incoming spin channel and the orbital angular momentum of the incident

beam ~l1, so that

J =
1

2

+

⊗ ~l1. (4.25)

Similarly, break up of the 32Cl nucleus can be described by either of the two

angular momentum couplings

0+ ⊗ ~l2 = J, (4.26)

or

1+ ⊗ ~l2 = J, (4.27)

where ~l2 is the orbital angular momentum for the emitted proton.

As mentioned before, since the outgoing tritons are detected at 0◦, with a
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small acceptance angle window for the spectrometer, this is similar to having

an axially symmetric detector at zero degrees. This implies that the orbital

angular momentum from the incoming beam has no contribution for proton

focal plane coincidences. Therefore, the populated substates of |J〉 can not

exceed the following spin addition

|mmax| = Sbeam + Starget + Sejectile. (4.28)

This is essentially the crux of Method II by Litherland & Ferguson, where

the process of measuring particle coincident events using an axially symmet-

ric counter at 0◦ or 180◦ greatly restricts the m-state population of |Jπ〉.

Consequently, for our case this results in |mmax| = 1
2

+ 0 + 1
2

= 1. Therefore,

only m = 0,±1 substates are populated for all |J〉 by the 32S(3He, t)32Cl

reaction. This restriction on the alignment of the final state is a useful con-

straint. Assuming that the m = 0 and m = ±1 sub-states are symmetrically

populated [49] as shown in Figure 4.21, we can write this constraint as the

sum of population fractions

P (m = 0) + 2P (m = 1) = 1. (4.29)

This unequal population of the m-states results in a non-isotropic angular

distribution for the emitted protons. The experimental angular distribution

is expected to be of the form

W (θ) =
∑

k=even

AkPk(cos θ), (4.30)
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Figure 4.21: Angular momentum projection along beam axis, the axial sym-
metry defined by the spectrometer acceptance angle.

where the Ak coefficients are

Ak =
∑
mSll′

P (m)〈JmJ−m|k0〉(−)S−mZ(lJl
′
J ;Sk)× 〈J ||l||S〉〈J ||l′ ||S〉∗.

(4.31)

The Clebsch Gordan 〈JmJ−m|k0〉 and the Z coefficients above are defined

in Ref. [48]. Furthermore, the sum runs over allowed values of the channel

spin S, and two allowed values of the orbital angular momentum l and l
′
. The

reduced matrix element 〈J ||l||S〉 represents a decay from a state with total

angular momentum J to a channel spin S, with orbital angular momentum

l.
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Parity conservation demands that two different l values are allowed only if

l
′

= l + 2. This is the second constraint. Therefore there can only be

s-wave and d-wave mixing (p-wave and f -wave mixing etc) for the different

l values of the protons. This constraint does not allow combinations of l = 0

and l = 1 orbital momentum values for example.

The Z(lJl
′
J ;Sk) coefficients in Eq. (4.31) can be rewritten as

Z(lJl
′
J ;Sk) =

1√
2l + 1

1√
2l′ + 1

〈l0l′0|k0〉W (lJl
′
J ; sk), (4.32)

where W (lJl
′
J ; sk) is the Racah W coefficient defined by

W (lJl
′
J ; sk) = (−)l+l

′
+2J

 l J S

J l
′
k

 . (4.33)

The quantity in the matrix above is the Wigner 6j coefficient. It should also

be noted the the 〈l0l′0|k0〉 Clebsch Gordan coefficient in Eq. (4.32) is only

non-zero when k = even, for parity conservation to hold. This is because if

l
′

= l + 2, then k can only take values between 2 and (2l + 2). This is the

third constraint (see Eq. 4.30).

Now lets assume that the state |Jπ〉 is a natural parity state defined by

πinitial = (−1)J . As mentioned previously, the possible outgoing channel

spins for this state can only be 0+ or 1+. Therefore, we have the following

possibilities

S = 0 : Then J can only be J = l. (4.34)

S = 1 : Then J can only take values J = l, l ± 1. (4.35)
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The final state is |31S〉 ⊗ |p〉 and its parity is πfinal = (+)(+)(−1)l (as it

is a multiplicative quantum number). As parity needs to be conserved, we

have the following results. For the possibility that J = l, πinitial = (−1)J =

(−1)l = πfinal. However, for the other possibility J = l±1, the allowed πfinal

value has to be πfinal = (+)(+)(−1)J(−1)±1 which is not equal to πinitial. So

the J = l ± 1 is forbidden. Similarly if |Jπ〉 were unnatural parity states, so

that πinitial = (−1)J+1 then only the values of l = J ± 1 are allowed, while

the l = J values are forbidden for the protons. These selection rules make

the fourth constraint for the proton analysis.

The last constraint arises from the 〈JmJ−m|k0〉 Clebsch Gordon coeffi-

cient, which requires that Ak = 0 if k > 2J . This limits the total number of

terms in Eq. (4.30).

Given enough statistics in the coincidence spectrum, the above constraints

allow an analysis of the protons’ (or other charged particles) angular distri-

bution using the CAKE array, once the efficiency of each strip is known. The

latter can be easily determined using a GEANT simulation. This has already

been performed in another Master’s project [38].

74



Chapter 5

Conclusions and future work

In conclusion, we have investigated (mainly) proton unbound states in 32Cl

with a 32S(3He, t) charge-exchange reaction. One goal of this measurement

was to search for potential sources of isospin mixing that would lead to a

violation of the IMME in the A = 32, T = 2 quintet. The other goal was to

indirectly determine the 31S(p, γ) reaction rate, which is an important reac-

tion for nucleosynthesis in explosive stellar environments. In our experiment

we identify a previously unknown state in 32Cl at an excitation energy of

4983(3) keV. This state is separated from the T = 2 isobaric analogue state

in 32Cl at 5046 keV by an energy difference of ∆E = 63 keV. If this state

were 0+ in nature, then it is possible that it would be a source of isospin

mixing, which would in turn explain the IMME violation for the A = 32,

T = 2 quintet. Regrettably, the proton-focal plane coincident spectra from

this experiment did not have enough statistics to perform an angular dis-

tribution measurement and obtain the spin-parity of the 4983(3) keV state.

This was mainly due to the low cross section for the (3He, t) reaction, which

we determine to be approximately 0.1 mb. Nevertheless, assuming that the

state was 0+ in nature, we can make estimations based on a two-state mix-
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ing picture. Using the formula derived in Eq. (1.19) and further assuming a

mixing matrix element of approximately 20 keV, based on the calculations

of Signoracci and Brown [13], we obtain the unperturbed energy difference

between the two states to be ≈ 48.7 keV. This means that the T = 2 state

would be shifted upwards by ≈ 7 keV, assuming purely two-state mixing.

Consequently, the mass excess of the T = 2 state in 32Cl should be corrected

to M = −8287.84(70) keV prior to performing the IMME fit. With other

measured masses, a quadratic fit to the IMME with this value unfortunately

does not resolve the issue. In fact, we obtain a reduced χ2 value of 32.4 for

a quadratic fit to the masses. So it is highly possible that

1. The 4983 keV state is not a 0+ state as expected, or

2. There are unaccounted systematic effects that might have affected some

of the mass measurements.

This requires further investigation.

The low statistics in the coincidence data also affected our planned
(Γp

Γ

)
measurement to obtain the 31S(p, γ) reaction rate. Nonetheless, despite the

above, we have algebraically developed a procedure to analyse the proton

angular distributions in such data, taking advantages of certain constraints

set by angular momentum selection rules and other conservation laws. For

future similar experiments that have a high cross section for CAKE-focal

plane coincidences, we can take advantage of this procedure to effectively

use Method II of Litherland & Ferguson, together with a χ2 minimization

technique in order to determine possible l values for a given proton branch.

Once the transferred l for a proton group is determined, extracting the Jπ

of the unbound states should be trivial.
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