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Abstract

The 9Be - 9B isospin doublet carries fundamental significance for both nuclear structure and

nuclear astrophysics studies. The first excited 1
2

+ state in 9Be is already well established.

However, its isobaric analogue 1
2

+ state in 9B has not been unambigously determined yet.

Theoretically, two popular descriptions of the 9B nucleus either use a cluster model with two

unbound α particles held together by a covalent proton or using the shell model, as a 8Be

core + proton in the sd shell. An experimental determination of the excitation energy of the

first 1
2

+ state in 9B will provide valuable information in validating the theoretical model that

adequately describes such light unbound nuclei. Further, it will also provide a robust test

of mirror (isospin) symmetry violations via measurements of mirror energy differences in the

doublet.

Although there have been several experimental attempts to characterize the first 1
2

+ state in

9B, several discrepancies still exist in reported values of the excitation energies. This thesis

describes an experiment performed at iThemba LABS using the 9Be(3He, t)9B reaction to ad-

dress the above issue. As a byproduct, the thesis also describes an additional determination

of the excitation energy of the second Jπ = 1
2

−, T = 3
2
state in 9B from the same experiment.

This was performed in order to resolve a discrepancy related to the excitation energy of this

state. The consequence of this measurement related to Isobaric Multiplet Mass Equation

(IMME) for the excited T = 3
2
, A = 9 quartet is discussed briefly.
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CHAPTER 1

BACKGROUND AND MOTIVATION

1.1 The atomic nucleus and isospin symmetry

The atomic nucleus is the small, heavy and central constituent of an atom and it consists of

Z protons and N neutrons, which are called nucleons, The mass number for the nucleus is

given by the sum of the neutron and proton numbers, A = N + Z. The nucleons (protons

and neutrons) have the same intrinsic spin, S = 1
2
, and are fermions that obey Pauli’s

exclusion principle. Since the 1930’s the analysis of pp and np scattering have consistently

shown that after taking into account the Coulomb force, pp and np interactions were roughly

equal in strength. It was therefore ascertained that the force between two nucleons is charge

independent. This charge independence, together with the fact that protons and neutrons

had nearly identical masses led Heisenberg to introduce a new quantum number called isospin.

The projection of isopsin, labelled the different charge states of a nucleon. In other words,

the neutron and the proton can be represented as two states (projections) of the nucleon.

This formalism is discussed in greater detail below.
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1.1.1 Isospin formalism

The isospin formalism describing nucleons is equivalent to the description of spin-1/2 parti-

cles. As mentioned qualitatively previously, the proton and the neutron both have isospin

t = 1/2 but with two different possible projections along the 3rd axis in isospin space (i.e

t3 = +1
2
for neutrons and t3 = −1

2
for protons) as shown in Fig. 1.1. Thus, the t3 quantum

number is related to the charge of the nucleon.

Figure 1.1: Isospin 1/2 protons and neutrons, characterized by their projections along the 3rd

axis in a 2-dimensional isospin space.

The three components of the isospin vector satisfy similar commutation relations as those of

spin-1/2 particles, given by

[t1, t2] = it3, [t2, t3] = it1, [t3, t1] = it2. (1.1)

Using the above convention, the charge q of a nucleon can be written as [1]

q = e(
1

2
− t3). (1.2)
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With the help of Eq. (1.2), the total charge of a nucleus is obtained by summing over all

nucleons, so that

Ze =
A∑
i=1

qi = e(
A

2
− T3). (1.3)

The third component of the total nuclear isospin T is then simply

T3 =
A∑
i=1

t3,i. (1.4)

From Eq. (1.3) it is easy to deduce that

T3 =
A

2
− Z =

(N − Z)

2
. (1.5)

For an atomic nucleus, the maximum value of T is 1
2
A and the minimum value of T is |T3|.

Therefore the isospin of nuclei fall in the range [1]

1

2
|N − Z|≤ T ≤ 1

2
A. (1.6)
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Figure 1.2: Level scheme for A = 7 isobars.The energy levels in these nuclei are roughly
identical. They shift relative to each other once electromagnetic corrections are taken into
consideration. Figure taken from [1].

Isospin is considered a good quantum number in the presence of hadronic forces alone and

each quantum state of an atomic nucleus can be described by a value of isospin T . This near

symmetry of isospin manifests itself as almost identical spectra in mirror pairs [2]. Therefore,

even though the Coulomb force breaks this symmetry, the isospin quantum number can be

used to identify isobaric analogue states in nuclei [2]. From Eq. (1.6), it is very clear that

isospin singlets with T = 0 can only emerge in nuclides with N = Z. Such nuclides are called

self-conjugate. Good examples of T = 0 nuclei are the ground states of the even-even nuclei

such as 2H, 4He, 6Li, 8Be, 12C, 14N, 16O, etc. Isospin doublets can only be found in mirror

nuclides where Z = (A ± 1)/2, as shown in Fig. 1.2. The ground states of isospin doublets

(such as the mirror nuclei in Fig. 1.2) have isospin T = 1/2. An example of an isospin triplet

is shown in Fig. 1.3, where the T = 1 triplet consists of the ground states of 14C and 14O

with the first excited state of 14N.
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Figure 1.3: Level scheme for A = 14 isobars. Note that the ground state of 14N is a T = 0
singlet and the first excited state is a member of a T = 1 triplet. Figure taken from [1].

1.2 Isospin symmetry breaking

The presence of an external electromagnetic field breaks the degeneracy of energy levels in

atoms (the Stark and Zeeman effects [?]). Similarly, in atomic nuclei, charge-dependent

interactions break isospin symmetry. This is shown in Fig. 1.2 and Fig. 1.3. The small

differences between the analogue energy levels in nuclei is caused by this breaking of isospin

symmetry. More explicitly, in the limit of perfect isospin symmetry, the isobaric analogue

states (IAS) would have the same isospin T , spin-parity Jπ and other properties. These IAS

are characterised by different projections T3 within the isobaric multiplet. The presence of

purely charge independent hadronic forces results in a (2T + 1)-fold degeneracy for a given

isobaric multiplet with isospin T ,which would result the members of an isobaric multiplet

having identical masses. The IAS shift relative to each other when (2T + 1)-fold degeneracy

is lifted due to charge-dependent interactions. This is shown in Fig. 1.4, where the atomic

5



Zeeman effect is shown for comparison. The Zeeman effect occurs in the presence of an

external magnetic field. The Coulomb displacement energy (CDE) in nuclei is defined as a

measure of the isospin symmetry breaking in effective nuclear interactions and it is given by

the differences between the excitation energy of the isobaric analogue states [3].

I describe the algebra of isospin symmetry breaking below.

Figure 1.4: Both spectra show the splitting of the degeneracy due to an external field. Top:
Zeeman effect. Bottom: Isospin symmetry breaking.

The charge independence of nuclear force requires that the total isospin T commutes with

the hadronic Hamiltonian Hh (similar to angular momentum conservation and rotational

invariance), such that

[Hh, T ] = 0. (1.7)

When an electromagnetic perturbation is added to the hadronic Hamiltonian, we get an

6



effective Hamiltonian

H = Hh +Hem. (1.8)

The breaking of isospin symmetry results in [H,T ] 6= 0. This implies that isospin is not

a conserved quantity any more. However, since the charge q is always conserved, and it is

related to T3, we always have

[H,T3] = 0. (1.9)

The electromagnetic perturbation on the other hand can be written in terms of two-body

Coulombic forces and the isospin operators as [4]

Hem =
∑
i<j

(
1

2
− ti3).(

1

2
− tj3)

e2

rij
, (1.10)

where i and j label individual protons. Hem can be further separated as a sum of isoscalar,

isovector and isotensor operator of rank 2,

Hem = H0
em +H1

em +H2
em (1.11)

where,

H0
em =

1

3
e2
∑
i<j

(
3

4
+ ~ti.~tj)r−1ij

H1
em =

1

2
e2
∑
i<j

(ti3 + tj3)r
−1
ij

H2
em =

1

3
e2
∑
i<j

(3ti3t
j
3 + ~ti.~tj)r−1ij .

(1.12)

Using the Wigner-Eckart theorem, the T3 dependencies can be factored out in such a way

7



that the reduced expectation value of the electromagnetic Hamiltonian is expressed as

Eem(A, T, T3) =
2∑

k=0

(−1)T−T3

T k T

T3 0 T3

 〈T ||H(k)
em ||T 〉. (1.13)

This gives a quadratic relation in T3 for the coulomb energies of the multiplet members which

is written as

Eem(A, T, T3) = E(0)
em(A, T )− T3E(1)

em(A, T ) + (3T 2 − T (T + 1))E(2)
em(A, T ), (1.14)

where the quantities E(0)
em, E(1)

em, and E(2)
em are the scalar, vector and tensor Coulomb energies,

and are respectively given by

E(0)
em = 〈T ||H0

em||T 〉

E(1)
em =

−1√
T (T + 1)

〈T ||H1
em||T 〉

E(2)
em =

−1√
T (T + 1)(2T − 1)(2T + 3)

〈T ||H2
em||T 〉.

(1.15)

This results in a relation for masses of an isobaric multiplet members [4]

M(A, T, T3) =
1

2
(mn+mH)A+(mn−mH)T3+〈TT3|H0|TT3〉+〈TT3|H1|TT3〉+Eem(A, T, T3).

(1.16)

Therefore, using Eq. (1.14), Eq. (1.15) and Eq. (1.16), it is sufficient to express the masses

of an isobaric multiplet using the quadratic form

M(A, T, T3) = a(A, T ) + b(A, t)T3 + c(A, T )T 2
3 (1.17)

which is called the isobaric multiplet mass equation (IMME). The a, b and c coefficients

are related to diagonal reduced matrix elements of the charge-dependent part of the total

8



Hamiltonian. These coefficients incorparate all the wavefunction information, and can either

be calculated or obtained experimentally from a quadratic fit to the measured mass excesses

of the multiplet members. Since this model uses first order perturbation theory to relate the

masses of the IAS, it is expected that the above quadratic form of the IMME breaks down

when first order perturbation theory is not enough to satisfactorily describe the data. Such a

breakdown can occur due to either largely differing wavefunctions in the IAS due to mixing

with other isospin states or due to the weakly bound nature of some of the IAS which would

couple with the unbound particle continuum [4]. In such a scenario, the IMME would require

additional cubic (dT 3
3 ) or quartic (eT 4

3 ) terms.

1.2.1 Isospin mixing of two nuclear states

Consider two initial nuclear states represented by |φ1〉 and |φ2〉. Assume these states have the

same spin and parity but have different isospin. If they have energies eigenvalues E1 and E2,

that are separated by an energy difference ∆Eu, as shown in Fig. 1.5, then the actual states

involved that describe nuclear properties are not the ‘pure’ states |φ1〉 and |φ2〉. Instead,

they are admixtures of the two configurations, represented by |ψ1〉 and |ψ2〉. This is due

to an effective residual two-body interaction between the nucleons, which we denote by V .

The energy eigenvalues and eigenvectors can be obtained to the lowest-order in perturbation

theory by diagonalising the 2× 2 matrix [5]

E1 V

V E2

 (1.18)

where the isospin mixing matrix element is given by 〈φ1|V |φ2〉.

9



Figure 1.5: The repulsion of energy levels in a nucleus due to two-state isospin mixing.

The extent of isospin mixing relies on both the ∆Eu and the magnitude of the matrix element

〈φ1|V |φ2〉. A large energy spacing ∆Eu in Fig. 1.5 reduces the effect of isospin mixing and

vice versa. On defining a ratio λ, it can be easily shown

λ =
∆Eu

〈φ1|V |φ2〉
, (1.19)
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that the perturbed energies in terms of the unperturbed levels E1 and E2 takes the form [5]

E ′1, E
′
2 =

1

2
(E1 + E2)±

1

2

√
(E2 − E1)2 + 4 〈φ1|V |φ2〉2

=
1

2
(E1 + E2)±

∆Eu
2

√
1 +

4 〈φ1|V |φ2〉2

∆E2
u

=
1

2
(E1 + E2)±

∆Eu
2

√
1 +

4

λ2
.

(1.20)

Therefore, final energy difference is simply

E ′2 − E ′1 = ∆Eu

√
1 +

4

λ2
. (1.21)

It can be also trivially shown that each energy eigenvalue shifts by an amount

|∆Es|= |E ′2 − E2|= |E ′1 − E1|=
∆Eu

2

[√
1 +

4

λ2
− 1
]
, (1.22)

as a result of the perturbation. The admixed wave functions take the final form

ψ′1 = αφ1 + βφ2

ψ′2 = βφ1 + αφ2,

(1.23)

where the probability amplitudes α and β are such that α2 + β2 = 1. The probability

amplitude β can be expressed in terms of R, so that

β =
1{

1 +
[
λ/2 +

√
1 + λ2/4

]2} 1
2

. (1.24)
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1.3 Coulomb Energy differences & the Thomas-Ehrman

shift

Coulomb displacement energies between isobaric analogue states provide useful information

to better understand isospin symmetry breaking and structure of atomic nuclei. Many inves-

tigations have already been carried out over the years, in which comparisons have been made

between theory and experiment over a wide range of nuclei [6]. It has been observed that

just incorporating the Coulomb repulsion between protons gives a reasonable approximation

for the energy differences of mirror nuclei. This Coulomb energy difference in mirror nuclei

is given by [7]

∆Ec = B(N + 1, Z)−B(N,Z + 1) (1.25)

where B(N,Z) is the binding energy for a nucleus with N neutrons and Z protons. In 1950

Thomas [8] and Ehrman [9] suggested that the presence of the Coulomb force for protons

causes a distortion in loosely bound proton wave functions compared to the neutron wave

functions, such that the CDE’s in IAS get affected further. Such Thomas-Ehrman effects

occur due to the radial expansion of the proton wave functions on account of the coupling of

these states with the continuum. These are discussed in greater detail in the next section.

1.4 The nuclear shell model

An important idea in providing a simplified description of the complex details of nuclear

structure was provided by the atomic shell model. Fig. 1.6 shows a plot of 2 proton and

2 neutron separation energies for several nuclei against nucleon number. This pattern is

remarkably similar to those for ionisation energies in atoms: i.e a continous increase with

N or Z except for a few sharp drops that occur at specific neutron and proton numbers,

called the magic numbers (2, 8, 20, 28, 50, 82, 126). These numbers represent the effects of
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filled major shells, which is similar to the atomic model, where atomic shells are filled with

electrons in accordance to Pauli exclusion principle. In the atomic shell model, an inert core

of filled shells together with the valence electrons determine atomic properties. The potential

felt by the electrons in atoms is created by the Coulomb field of the nucleus. Similarly, in

the nuclear shell model, orbits are filled with nucleons but there does not exist any external

potential. The fundamental difference from the atomic model is that the mean field felt by

the nucleons is created by the nucleons themselves.

Figure 1.6: A plot of proton-proton (top) and neutron-neutron (bottom) separation energies
against Z (top) and N (bottom). The sudden change appears at the magic numbers (green-
circled numbers). Figure taken from [10] (adapted from Ref. [11]).

The nuclear Hamiltonian in the independent particle shell model is given by the sum of a
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residual interaction V̂ and Hamiltonian Ĥ0 [12]

Ĥ = Ĥ0 + V̂ , (1.26)

where Ĥ0 is the summation of single-particle Hamiltonian,

Ĥ0 =
A∑
i=1

ĥi. (1.27)

This Hamiltonian corresponds to a system of nucleons moving independently in a single-

particle potential, so that ĥi controls the motion of the ith nucleon. A simple single particle

Hamiltonian ĥi can be expressed as

ĥi =
p̂2i

2M
+ U(ri) (1.28)

where p̂i = −ih̄ ~∇i is the nucleon momentum, M is the mass of a nucleon, ri is the radial

coordinate of the ith nucleon and U(ri) is the single-particle potential. The potential under

which the nucleons move is the key to the model. The first step in developing shell model

is to consider two potentials : the infinite square well and the harmonic oscillator. The

3-dimensional infinite square well potential is

U(r) =


−V0, if r < R

∞, if r ≥ R,

(1.29)

while the spherical harmonic oscillator potential is

U(r) =
1

2
Mω2r2, (1.30)

where ω is the angular momentum. Both these potentials can be used to solve single-nucleon
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wave functions analytically. The infinite square well potential yields the magic numbers

2, 8, 18, 20, 34, 40, 58, 68, 90, 92 and only the first few agree with experiment. It also has a

few other disturbing limitations. Firstly, to separate a nucleon from a nucleus, an infinite

amount of energy must be provided. Furthermore a realistic nuclear potential does not have

sharp edges unlike the infinite square well but falls smoothly to zero beyond the mean nuclear

radius R̄, closely approximating the nuclear charge and matter distributions. The harmonic

oscillator potential is smooth and yields reasonable analytical solutions of the Schrödinger

equation. However, despite this smooth behaviour, the potential has other several limitations.

The potential goes to infinity when r increases indefinitely, again implying infinite separation

energies similar to the square well. Furthermore, due to rotational symmetry in 3-dimensions,

the harmonic oscillator potential gives degenerate solutions [13] for different `-values of orbital

angular momentum. And finally, although it works satisfactorily in reproducing low-lying

energies and several magic numbers, differences start to show up as the energies and nucleon

numbers increase. Therefore an alternative to both these potential is the Woods-Saxon

potential

V (r) =
−V0

1 + exp(r −R)/a
, (1.31)

where R is the range of the potential, and a and V0 denote skin thickness and well depth

respectively. These parameters can be adjusted to give the proper separation energies and

the energy levels shown in Fig. 1.7. The Wood-Saxon potential also removes ` degeneracies

of the major shells because the particles with the higher `-values are on average at a larger

distance from the centre of the well than the particles with a lower `-values [14]. One of the

disadvantages of the Woods-Saxon potential is that single-particle wave functions can only

be computed numerically. An alternative is to add a D`2 term, with D < 0 to the single

particle Hamiltonian for the spherical harmonic oscillator potential.

Ĥ = −}2∇2

2M
+

1

2
Mω2r +D`2. (1.32)
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This breaks the ` degeneracy and lowers the energy of a state with orbital angular momentum

` by an amount that is proportional to `(` + 1) [12]. However despite addressing the most

obvious problems, these shell model potentials still do not reproduce all the experimentally

observed magic numbers and shell gaps. To improve the situation further, Mayer, Haxel,

Suess and Jensen proposed to add a spin-orbit term in the potential. The spin-orbit term is

simply [11]

Vso(r) = V`s(r)~̀ . ~s, (1.33)

where ~̀ and ~s denote the orbital angular momentum and the intrinsic spin of the nucleon

respectively. The ~̀ . ~s factor causes the reordering of the single particle levels in the following

manner. In the presence of spin-orbit interaction, states are labelled with the total angular

momentum ~j = ~̀ + ~s. A single nucleon has s = 1
2
, with possible values of the total angular

momentum quantum number `+ 1
2
or `− 1

2
. Therefore, the expectation value of ~̀ . ~s is given

by the following expression

< ~̀ . ~s >=
1

2
[j(j + 1)− `(`+ 1)− s(s+ 1)]}2. (1.34)

This causes a reordering of the levels as can be shown in the following example. Consider

the 0f level in Fig. 1.7. The possible values of the total angular momentum for this state are

j = `± 1
2

= 7/2 or 5/2. This splits the level into both 0f5/2 and 0f7/2 states. Each level has

(2j+ 1) degeneracy which arises from the mj substates. The 0f5/2 and 0f7/2 states are called

a spin orbit pair or doublet. These states are separated by an energy that is proportional to

the < ~̀ . ~s > value for each state. When ` increases, the energy splitting also increases. The

effect of this splitting is shown on the extreme right of Fig. 1.7.
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Figure 1.7: Diagram showing the results of adding the spin-orbit interaction to a potential.
Here the spin-orbit term was added to the Wood-Saxon, which results in a splitting of the
states with ` > 0. Taken from [15].

We now return to the discussion of Thomas-Ehrman shifts in the context of the shell model.

As an example, on comparing the energy spacings between the 1
2

− ground state and the

excited 1
2

+ levels in the 13N −13 C mirror pair, it was found that the energy gap in 13N

was 720 keV smaller than in 13C. The levels can be described as a single-particle 0p1/2

neutron state and a 1s1/2 proton state respectively. Because the centrifugal barrier is absent

in the 1s1/2 orbit (` = 0), making the proton less bound, it was apparent that the Thomas-
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Ehrman (T-E) shift would be larger for the 1s1/2 orbit compared to the 0p1/2 orbit. Thus,

as the proton wave function extends further, the T-E effect can be explained to emerge

due to mismatch between the wave functions for the odd nucleon. However, it should be

noted that not all of the 720 keV energy difference in the above example is because of the

Thomas-Ehrman effect. About 600 keV of the energy difference is simply because of the

Coulomb displacement energy. It is now well understood and accepted that the Thomas-

Ehrman shift contribution begins to cause appreciable effects at energies near the particle

separation threshold [16].

1.5 Motivation for this work.

1.5.1 Energy level spectra for the A = 9 mirror pair

The A = 9 mirror pair, 9Be and 9B, plays an important role in understanding the structure

of light unbound nuclei and the role of Coulomb displacement energies in mirror nuclei.

Such light nuclei are interesting due to several reasons. They have been at the forefront of

intense experimental and theoretical activity considering recent advances in ab initio based

calculations [17]. Additionally there have been a lot of interest in studying the clustering

properties of these nuclei, using microscopic cluster models [18]. Therefore, experimental

information regarding the structure of these nuclei are important in order to address several

open questions that are of current interest.
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Figure 1.8: The energy levels of 9Be and 9B.

Fig 1.8 shows the nominal energy levels of 9Be and 9B for comparison, where the ground state

is taken as zero. As can be seen, the ground state of 9B itself is unbound to proton emission.

Many experiments have already been performed on both these nuclei and several states below

3.1 MeV have been successfully matched with their mirror partners [19]: 9Be(3
2

−
, g.s.) −

9B(3
2

−
, g.s.), 9Be(5

2

−
, 2.43)−9 B(5

2

−
, 2.36), 9Be(5

2

+
, 3.05)−9 B(5

2

+
, 2.79). Over the past several

decades there have also been extensive theoretical and experimental efforts directed towards

predicting and observing the first excited 1
2

+ state in 9B. However, although the unbound

first excited 1
2

+ state of 9Be at 1.68 MeV has been known for many years [20], knowledge of

the first excited 1
2

+ state in 9B has been inconclusive. This is mainly because the state is

very broad and is present amongst much more intensely populated peaks that also have large

widths. I summarize current knowledge of this state in the next chapter, where I describe

also some of the theoretical models used to describe the A = 9 isospin doublet.
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1.5.2 Isobaric Multiplet Mass Equation (IMME) for the A = 9, T =

3/2 quartet

The energy levels in A = 9 nuclei, particularly 9B and 9Be are important in elucidating

other isospin symmetry properties that are relevant for studies of nuclear structure. In the

past there have been several experimental tests carried out to look for deviations from the

quadratic form of the IMME shown in Eq. (1.17). Any breakdown of the IMME would require

the inclusion of a T 3
3 cubic term or a T 4

3 quartic term. Furthermore, the IMME breakdown

would indicate many possibilities like the requirement of three-body forces, strong isospin

mixing with other states that have the same spin/parity as the IAS, or the need for a higher-

order perturbation theory to describe mass splittings [4]. However it is generally observed that

the quadratic form of the IMME holds very well for most nuclei up to A ∼ 40 [21]. Significant

deviations are expected in light nuclei with particle unbound states (such as 9B) [4]. The

breakdown would occur because the wave functions of the IAS would expand for the proton

rich members of the multiplet due to their coupling with the particle continuum (Thomas-

Ehrman effects) [4]. In this regard, the A = 7, A = 8, and A = 9 multiplets have been studied

extensively since many of the isobaric analog states in these nuclei have large widths that

would contribute to a violation of the IMME [4]. Recent measurements at radioactive ion

beam facilities have carried out some of the most stringent IMME tests in these multiplets

to further investigate such isospin non-conserving effects in light nuclei; especially the A = 9,

T = 3/2 quartet [22] and A = 8, T = 2 quintet [23]. The most recent compilation [21] of

A = 9 ground state masses and excitation energies shows that its lowest T = 3/2 quartet

requires a dT 3
3 cubic term with d = 6.7 ± 1.5 keV, for a good fit to the data [21]. This

value agrees with the theoretical predictions (d ∼ 4 keV) of Bertsch and Kahana, who

used a combination of three-body second-order Coulomb and other charge-dependent nuclear

interactions [24]. The enhanced d coefficient is natural consequence in their calculations
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because of the reduced binding of the last p3/2 proton in 9C.

Figure 1.9: The A = 9, T = 3/2 quartet. The ground states are expressed in terms of mass
excesses, ∆ = M − A. Potential admixed states are shown in red.

In contradiction with the explanation of Bertsch and Kahana, recent shell model calcula-

tions [22] have attributed the d coefficient in the first A = 9 quartet to isospin mixing with

nearby T = 1/2 states in the T3 = ±1/2 members of the multiplet. The admixed states (of

undetermined spin and parity) occur at excitation energies of 15100±50 and 15290±40 keV

for 9Be and 9B respectively [22, 25], shown in Fig. 1.9. The shell model prediction for the

cubic coefficient with a PJT Hamiltonian [26, 27] was found to be in excellent agreement

with the experimental value [22]. The shell model argument relied on the following: If the

IMME breakdown were indeed due to particle continuum coupling effects as suggested by
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Bertsch and Kahana, then the breakdown should be far worse of the second T = 3/2 quartet

in A = 9 shown in Fig. 1.9. This is because the IAS for both 9B and 9C in the excited state

quartets are particle unbound (i.e the proton separation energies are much smaller) [25].

However, a fit to the masses for the most precise available data in the excited quartet yields

d = 3.2 ± 2.9 keV, which is consistent with zero and therefore supports the isospin-mixing

interpretation of Ref [22]. This assumption comes under question if one takes into account

a recent determination of the excitation energy of the second T = 3/2 state in 9B [28]. The

authors of Ref [28] reported the energy of the state to be 16990± 30 keV by measuring the

energies of the break up particles from the 9B→ p+8 Be(2α) decay channel. This value dis-

agrees with the previous precise determination of Ex = 17076±4 keV from an older 11B(p, t)

measurement [29]. On using the result from Ref [28] a cubic IMME fit gives a significant

value of d = −60± 15 keV, which still does not rule out the explanation provided by Bertsch

and Kahana. To address this problem, we performed a remeasurement of the energy of the

second Jπ = 1/2−, T = 3/2 state in 9B using the 9Be(3He, t) reaction. Our result disagrees

with the latest determination.
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CHAPTER 2

THEORETICAL MODELS DESCRIBING THE 9B
NUCLEUS

2.1 The single-particle potential model

Since there were indications that the first 1
2

+ state in 9Be was a single-particle state in

s-wave (` = 0) scattering, mirror symmetry requires that the first 1
2

+ state in 9B have similar

properties. However, if it were indeed a single-particle 2s1/2 state, its excitation energy

would be lowered relative to its IAS in 9Be due to the Thomas-Ehrman shift [30]. In an early

analysis Sherr and Bertsch characterized the first 1
2

+ in 9B state using a simple Woods-Saxon

potential that was used to compute the widths and energies of mirror states in both mirror

nuclei. In order to do this, they first adjusted the depth of the potential to predict the broad

s1/2 and p1/2 resonances for unbound states in other light nuclei that was compared with

experimentally available data. Since reaction data had already showed a well defined 1
2

+

state in 9Be, Sherr and Bertsch defined the level to be the energy at which the amplitude

C(E) =

∫
Ψ(r)rφ0(r)r

2dr, (2.1)

was maximal. In the above, φ0(r) is the bound p3/2 wave function for the 9Be ground state and

|C(E)|2 is proportional to the probability of creating a continuum state from the ground state
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with the operator ′r. As shown in Fig. 2.1(a), a comparison of the predicted line shape for

the 9Be(γ, n) reaction with the experimental result of Fujishiro et al [31] showed a reasonable

agreement using this prescription, assuming a well depth of V0 = 56.3 MeV. A similar analysis

was performed to calculate the lineshape for the excitation of the 9B(1
2

+
) excited state from

its ground state. This yielded a theoretically predicted value of Ex(12
+

) = 0.93 MeV, with

a width of 1.4 MeV (see Fig. 2.1(b)), indicating that the Thomas-Ehrman shift persisted

even when s-wave neutron became unbound. Table 2.1 shows a comparison of theory versus

experiment from this work.

Figure 2.1: Calculated lineshapes for the gs → 1/2+ excitations in the A = 9 mirror pair.
Figure taken from [30].
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Table 2.1: Single-particle potential model computations of excitation energies (Ex) andf
total widths (Γ), in comparison with experimental values. Figure taken from [30] (adapted
from [32]).

9Be 9B

Ex Γ Ex Γ V0

(MeV) (keV) (MeV) (keV) (MeV)
3
2

−(exp.) 0 - 0 0.5 −
3
2

−(calc.) 0.10 - 0 1.3 41.5
1
2

−(exp.) 1.69 150 1.65 (∼ 1000) −
1
2

−(calc.) 1.70 230 0.93 1400 56.3
1
2

+(exp.) 2.78 1080 (2.6) ∼ 2400 −
1
2

+(calc.) 2.80 ∼ 1300 2.40 ∼ 2400 28.4
5
2

+(exp.) 3.05 280 2.79 550 −
5
2

+(calc.) 2.95 180 2.81 580 73.6

In 2004 Sherr and Fortune [33] revisited the calculations by adding nucleon coupling to core

levels other than just the ground state in 8B, and further including 5He and 5Li cores as well.

This work was followed by an analysis of the second 0+ state in the 10Be-10B doublet, which

was found to have an almost pure (sd)2 configuration. It was found that on coupling a 2s1/2

neutron to the 1
2

+ state in 9Be and varying the depth of the potential well, the excitation

energy of the 0+
2 state in 10Be could be reproduced. A similar analysis was performed using a

1d5/2 neutron and the 5/2+ state in 9Be. Assuming that the 0+
2 state in 10Be contains equal

parts of both 9Be + p and 9B + n amplitudes, since the 5/2+ state in 9Be is well known, the

2s1/2 and 1d5/2 admixtures in the 0+
2 state in 10B determined the excitation energy of the

first 1
2

+ state in 9B [34]. This was found to be at a higher value than the older result shown

in Fig. 2.1, at Ex = 1.3± 0.1 MeV.
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2.2 Microscopic Cluster Model

The microscopic cluster model was developed to provide a description of bound, resonant and

scattering states in a unified manner. For example, it was used to describe radiative capture

rates and electromagnetic transition strengths in light nuclei using the general-coordinate

method (GCM) [35, 36]. The advantage of this model is that it does not contain any free

parameters and reproduces elastic scattering cross-sections as well as electromagnetic prop-

erties of light nuclei reasonably well. Furthermore, it provides fairly accurate level scheme

predictions, such as the Coulomb energy differences between mirror nuclei [37]. In 1989, De-

scouvemont employed the GCM and a microscopic-three cluster model to describe the 9Be -

9B mirror pair [38]. By this time it was well established that the 9Be and 9B low-lying states

can be described as n + 8Be and p + 8Be respectively, with 8Be being perfectly modelled

by an α + α cluster structure. Since these nuclei involve a cluster with an additional spin 1
2

nucleon, this requires a spin-orbit force and additional angular momentum couplings to be

introduced. The total microscopic wave function of the system in the GCM formalism with

spin J and parity π is given by [38]:

ΨJMπ =
∑
lLI

A[Yl(ρ̂)⊗ [YL(ρ̂′)⊗ φn]I ]JMφαφαG
Jπ
lLI(ρ, ρ′), (2.2)

where A is an antisymmetrisor operator, and φα and φn are the internal wave functions of the

alpha particle and of the orbiting nucleon. GJπ
lLI is a radial wave function depending on the

relative co-ordinates ρ′ between the α particles and ρ between the nucleon and 8Be centre-

of-mass. The orbital momentum of the 8Be cluster is L while that of the external nucleon

around the 8Be core is given by `. I is the channel spin. Fig. 2.2 shows a depiction of the

two nuclei using the three cluster model. In many of these models the 9Be(9B) nuclei have

been described as Borromean systems, where the nuclei are described (in a manner similar to

the H+
2 molecule) in which two unbound α-particles are held together by a covalent σ-type
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Figure 2.2: Since 8Be is well described by an α + α cluster structure, 9Be and 9B nuclei
can be described in a Borromean model as n +8 Be and p +8 Be respectively. Figure taken
from [39].

neutron (proton) [18]. The GCM cluster model prediction for the energy of the first 1
2

+ in

9B was found to be 1.35 MeV [38], in agreement with the single-particle potential model.

2.3 The R-Matrix Model

The R-matrix theory was first proposed by Wigner and Eisenbud in 1947 [40]. In the most

general formulation, since the algebra for describing a set of states and their associated cross

sections is very difficult, it is more convenient in this model to introduce a set of intermediary

quantities called L, Ω, and R matrices. The first two matrices are diagonal and explain

any long-range non-polarizing interactions between separated nuclei. The R-matrix is non

diagonal and take into account the effects of nucleon-nucleon interactions in compound nuclei

as well as those that can be described as separated pairs [41]. Wigner and Eisenbud showed

that the energy dependence of any element of R can be expressed in the form [40] :

R
cc
′(E) =

∑
λ

γλcγλc′

Eλ − E
(2.3)
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where λ determines the members of a complete set of states. The γλc are called the “reduced

width amplitudes”. The Eλ are the energy eigenvalues of the states labelled as λ. Barker et

al [42] used the R-matrix theory to characterize states in light nuclei especially the 9B nucleus.

The formation assumed a reaction of the type A(a, b)B, in which the nucleus B is formed

in a state that is unstable to particle emission. The cross section for the reaction, given the

energy distribution of the particle b, can be represented in terms of a density-of-states function

ρ(EB) for the nucleus B. This gives the probability of formation for the nucleus B with an

excitation energy EB. Barker et al used density of states functions for s-wave proton and

neutron emission, together with experimental data from 9Be(γ, n), 9Be(p, p′) → n+8Be(2α)

and 9B(p, n) reactions to characterise low-lying particle unbound states in the 9Be/9B doublet.

This work was followed by a more focused investigation of the first 1
2

+ state in 9B by Barker

[43] with the definition

ρ(E) =
1
2
Γ

(Er + ∆− E)2 + (1
2
Γ)2

, (2.4)

where Γ is the width of the state, Er is the resonance energy and ∆ is a linear function

of energy in the vicinity of the resonance. This analysis yielded an excitation energy of

1.8−1.9 MeV for the state of interest, which was higher than the mirror state in 9Be in

contradiction to the other model predictions. This was mainly because the R-matrix analysis

required an inverted Thomas-Ehrman shift on account of the mirror 9Be state being above the

8Be g.s + s-wave neutron threshold [43]. As shown in Fig. 2.3, there currently exists a large

disagreement in the R-matrix predictions with the single-particle shell model calculations or

microscopic cluster model. The situation with the experimental data indicates otherwise, as

discussed in the next section.
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Figure 2.3: Theoretical predictions for the first excited 1
2

+ in 9B, obtained by models discussed
in the previous sections.
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Figure 2.4: Experimental determinations of the excitation for the first excited 1
2

+ in 9B.

2.4 Past experimental investigations of the first 1
2

+ state

in 9B

The first experiments to show the possible existence of the first excited 1
2

+ state in 9B

were performed by Marion et al [44–46]. In their experiments, low-energy proton beams were

bombarded on the 9Be targets to study the 9B(p, n)9B reaction, using a pulsed-beam time-of-

flight technique. They measured the excitation energy of the first 1
2

+ state in 9B to be 1.4 MeV
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with a width of about 1 MeV. In 1960 Saji et al [47] confirmed this observation, although the

state appeared to be weakly populated in their experiment. In 1962, Symons and Treacy [48]

observed the state using the 12C(p, α)9B reaction and obtained its energy to be 1.7±0.20 MeV

with Γ ≈ 1 MeV. This work was followed by Teranishi and Furubayashi [49] who recognized

that their fit to the near-threshold yield of neutrons from 9Be+p scattering data was improved

by including a 9B level at 1.7 MeV excitation. Following this work, Kroepfl and Browne [19]

also detected a 9B state at 1.5 MeV with a width of 0.7 MeV using 10Be(3He, α)9B reaction. In

1987, Kadija et al [50] studied low lying states in 9B using the (3He, t) reaction at the JULICH

cyclotron facility and obtained the evidence for the state to be at 1.61±0.03 MeV with a width

of 1.0± 0.2 MeV, following which Burlein et al [51] investigated the 9Be(6Li,6 He)9B reaction

and obtained the broad peak at the excitation energy of 1.32 ± 0.08 MeV with a width of

0.86±0.26 keV for 9B. More recently, research groups also used the 6Li(6Li, t)9B reaction with

state-of-the-art position-sensitive strip detectors, which yielded Ex = 1.6 ± 0.1 MeV. This

experiment was repeated at the Australian National University in 2003 with a more efficient

setup. Quite surprisingly, this experiment determined the excitation energy of the 1
2

+ state

to be 0.73 ± 0.05 MeV with a width of ≈ 0.3 MeV, in large disagreement with previously

measured values. This work was followed up by several other (3He, t) experiments [39,52,53],

which contrastingly were in better agreement with the older measurements. Figs 2.3, 2.4

and Table 2.2 summarise the current situation. Clearly the R-matrix predictions agree with

most of the experimental determinations and not the other theoretical models. On the

experimental front, it is only one of the most precise determinations that agrees with cluster

and single-particle potential model predictions while disagreeing with the rest. Clearly this

situation demands further investigation and provides adequate motivation for this work.
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Table 2.2: A summary of previous experimental determinations of first excited 1
2

+ state in
9B.

Author Ex (MeV) Γ (MeV) Reaction Year
Marion et al [44–46] 1.4 1 9Be(p, n)9B 1955-59

Saji et al [47] 1.4 1 9Be(p, n)9B 1960
Symons & Treacy [48] 1.7± 0.2 1 12C(p, α)9B 1962

Barker & Treacy et al [42] 1.2 1 9Be(3He, α)9B 1962
Teranishi [49] 1.7 − 9Be(p, n)9B 1964

Slobodrian et al [54] 1.4 − 9Be(p, n)9B 1967
Kroepfl & Browne [19] 1.5 0.7 10Be(3He, α)9B 1968
Anderson et al [55] 1.4 0.0 9Be(p, n)9B 1969
Kadija et al [50] 1.16± 0.5 1.0± 0.2 9Be(3He, t)9B 1987
Burlein et al [51] 1.32± 0.08 0.86± 0.26 9Be(6Li,6 He)9B 1988
Arena et al [56] 1.8± 0.2 0.9± 0.3 9Be(3He, α)9B 1988
Tiede et al [57] 1.6± 0.1 0.77 6Li(6Li, t)9B 1995

0.73± 0.05 ≈ 0.3 6Li(6Li, t)9B 1995
Akimune et al [52] 1.8±0.22

0.16 0.600±300
270

9Be(3He, t)9B 2001
Scholl et al [39] 1.85± 0.13 0.7± 0.27 9Be(3He, t)9B 2011

Baldwin et al [58] 0.8− 1.0 1.5 6Li(6Li, t)9B 2012
Wheldon at al [53] 1.85± 0.06 0.650± 125 9Be(3He, t)9B 2015

32



CHAPTER 3

EXPERIMENTAL APPARATUS AND TECHNIQUES

3.1 Experimental approach

As mentioned previously, our experimental approach was to produce the first excited 1
2

+ state

in 9B using 9B(3He, t)9B∗ reaction. Because the 9B states are particle unstable, it mainly

breaks up into a proton and 8Be, which in turn breaks into two alpha particles, as shown

schematically in Fig. 3.1. Part of the experiment was used to determine the energy of the

second T = 3/2 state in 9B in order to test the IMME for the excited T = 3/2 quartet for

A = 9. In this chapter I describe the apparatus used for these measurements.
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Figure 3.1: Sequence of break-up particles emitted from excited states in 9B, populated using
the 9Be(3He, t)9B reaction. Figure adapted from Ref. [32].
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3.2 The iThemba LABS cyclotron facility

All the measurements described in this thesis were conducted at iThemba LABS, a multi-

disciplinary facility situated in Somerset West, near Cape Town. This accelerator facility

provides high-energy beams of different ions, which can be extracted and used in a wide

range of applications, such as radioactive isotope production, proton and neutron therapy,

radiation biophysics and basic research. The basic research conducted at iThemba LABS in-

cludes an intensive program for fundamental nuclear physics and material sciences. The most

important feature of this facility is the Separated Sector Cyclotron (SSC) accelerator shown

in Fig. 3.2. The light or heavy ions are pre-accelerated by one of the two solid pole injector

cyclotrons (SPC1 and SPC2) until they gain energy sufficient enough to be transported to

the SSC. From the SSC the beams can be steered along different beam lines and transported

to different experimental facilities. For our experiment the beam was transported to the

K600 magnetic spectrometer vault through the X, P and S beam lines.
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Figure 3.2: Layout of the Separated Sector Cyclotron facility of iThemba LABS. Figure taken
from [59].

3.3 Scattering chamber

The scattering chamber used for this experiment was newly developed for measurements to

be performed at 0◦ to the beam direction. It is made of stainless steel, and located at the

turning axis of the spectrometer, connecting the end of the beamline to the entrance of the

magnetic spectrometer. The target ladder has the provision to mount six targets, as well as

a turntable on which an internal beamstop or detectors can be mounted, depending on the

experimental setup of interest. A picture of the chamber is shown in Fig. 3.3.
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Figure 3.3: The new scattering chamber setup with the CAKE mounted at backward angles.
Figure taken from [59].

For this experiments we also mounted an ancillary detector system called CAKE ( the Coin-

cidence Array for K600 Experiments) [60] to detect unbound protons from excited states in

9B. However, these data were not used for the final analysis, as the highly unbound nature

of the states in 9B distort the proton spectra as well.

3.4 Target preparation

Three targets were used in this experiment. These are listed as

• 9Be foil of thickness of 10.21± 0.41 µm

• 9Be foils of thickness of 4.41± 0.20 µm

• 26Mg foil of thickness of 3.86± 0.10 µm for energy calibration

A picture of these targets mounted on the K600 target ladder is shown in Fig. 3.4
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Figure 3.4: 9Be and 26Mg targets mounted on the K600 target ladder.

All of these targets were prepared using the mechanical rolling method, an economical and

simple technique that has been used to produce the self-supporting targets for many years.

However it is challenging to produce reasonably thin self-supporting 9Be targets. We used

a mechanical rolling mill for which a double packing was also used. These are showed in

Fig. 3.5. We produced one 9Be target that was ≈ 4 µm thick. A much thicker 9Be target was

purchased from Goodfellow. Regrettably the company shipped an ∼ 2 mg/cm2 thick target

instead of the requested 200 mg/cm2 thickness. Nevertheless, this thick target was also used

in our experiment.
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Figure 3.5: The mechanical rolling mill is shown on the left hand side and the stainless-steel
pack on the right hand side.

The 26Mg target material was bought from Oak Ridge National Laboratory and isotopically

enriched to 99.4%.

3.5 K600 Magnetic spectrometer

The high resolution K600 magnetic spectrometer [61] at iThemba LABS was used to detect

the reaction tritons for our measurements. The spectrometer is shown in Fig. 3.6. It consists

of five electromagnets, namely a quadrupole, two dipoles, and two trim coils (K and H).

The quadrupole magnet Q is used to focus the scattered particles vertically immediately

after collimation in the focal plane. The two dipole magnets D1 and D2 are the important

bending magnets of the spectrometer. They allow the momentum dispersion to be adjusted

by varying the two dipole magnet settings. Additionally, the two trim coils, positioned inside

the dipoles are used for the final focusing at the focal plane. The K-coil, a pole-face current

winding which introduces both a quadrupole and dipole component, provides the first order

kinematic variation of the momentum ejectiles with angle (x|θ). The H-coil, another pole-

face that introduces both a dipole and sextupole component, provides the corrections for
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(x|θ2) abberations. A crucial aspect of the device is its ability to run experiments in a

0◦ mode [61]. A collimator placed inside the scattering chamber imposes a ±2◦ restriction

(centred at 0◦) for scattered particles to be accepted to the spectrometer. The focal plane

position-sensitive detectors are situated behind the second dipole. The focal plane detectors

allow measurements to be taken in the low, medium or high dispersion modes. I discuss these

briefly below.

Figure 3.6: Top view of the K600 magnetic spectrometer configured in the 0◦ mode.
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3.6 The focal plane detector system

The focal plane detector system of the K600 magnetic spectrometer consists of two important

components, the vertical drift chambers (VDCs) and the plastic scintillators (also known as

paddles). In this experiment only one VDC/paddle combination was used due to the low

energy of the outgoing tritons1. The main aim of the VDCs is to determine the position

and angle at which specific charged particles cross the focal plane. The plastic scintillators

situated behind the drift chambers are used for trigger signals for the events and for particle

identification. Both these detector systems are described below.

3.6.1 Vertical drift chambers (VDCs)

The VDCs are gaseous ionization detectors whose main purpose is to track scattered particles

and analyse the excitation energies of the recoil nuclei. In this experiment one VDC was used

in a medium dispersion focal plane configuration. The VDC consists of two wire planes: an

X and a U wire plane. The X wire plane is perpendicular to the scattering plane, while

in the U wire plane the wires are angled at 50◦ with respect to the scattering plane. The

X wire plane provides horizontal information of the scattered particle while a U wire plane

provides both horizontal and vertical information. Each VDC consists of three high-voltage

planes that separate the detector into an X and a U wire chamber. The high-voltage (HV)

planes are made from streched aluminium foil. Mylar windows are used to isolate the VDC

wire chambers from atmosphere. Fig. 3.7 shows a cross section of the VDC used for this

experiment.
1Other K600 spectrometer experiments use two VDC’s and plastic scintillators for improved resolution.

41



Figure 3.7: Cross-sectional top view of a VDC [59].

Figure 3.8: This figure shows the side view of the VDC wire planes. Taken from [59].

The X and U wire planes are sheltered within the wire chambers of the VDCs. Each X wire

plane consists of 198 signal wires and 201 guard wires while each U wire plane consists of

143 signal and 146 guard wires. The X wires are positioned vertically while the U wires are
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angled 50◦ with respect to the horizontal plane. All signal wires are positioned such that

the normal/minimum distance between neighbouring signal wires of a particular wire plane

is 4 mm. A side view of the wire planes is shown in Fig. 3.8.

3.6.2 Plastic scintillator (paddle)

As mentioned before, the plastic scintillator paddles are positioned behind the drift chambers

and used to generate the event trigger signals and for particle identification. They are made

of BC-408 plastic scintillation material, manufactured by Saint Gobain. The choice of BC-

408, suitable for measuring charged particles, is due to their very short response times. The

paddles have a surface area of 48"× 4"and their thickness ranges from 1
8
"to about 1

2
". We

used the latter for this measurement.

Figure 3.9: The K600 scintillator paddles. The material is insulated from external light
sources by having the paddles wrapped in Mylar. The image on the right shows the light
guides which couple the scintillators to their photomultiplier tubes [59].

The choice of thickness depends on the scattered particle of interest and on its energy. In other

cases, if the charged particles have sufficient energy to pass through the VDCs and the first
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paddle ∆E, a second paddle can be used as an E detector. In this case the paddle coincidences

would be used for triggering and the additional particle identification information can be

obtained through ∆E − E spectra.
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CHAPTER 4

DATA ANALYSIS

In this chapter I discuss the analysis of the experimental data obtained from our 9Be(3He, t)

measurement. During the experiment, raw data were collected by the MIDAS [62] data

acquisition (DAQ) system in the form of event files. An online analysis code that was

previously written explicitly to analyze K600 spectrometer data was further modified to

carry out an offline analysis on the data of an event-by-event basis. Different subroutines in

the code were used to convert the data into ROOT [63] files that were subsequently used for

the offline analysis.

4.1 Particle Identification (PID)

The first step in the analysis procedure was to identify the particles detected at the focal plane

from 9Be+3He reactions. In order to select only the tritons from 9Be(3He, t)9B reactions, a

particle identification gate must be applied on the data. Since, the energy deposited on

the paddles is observed as the integrated charge from the photomultiplier tubes (PMTs),

in conjuction with the time of flight (TOF) of the ejectiles, this PMT signal can be used

to define the particle identification (PID) gates. The TOF is calculated with respect to

a common stop signal provided by the RF from SSC. By plotting the energy deposited in
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the scintillator paddle against the TOF, various PID loci become visible. As mentioned

previously, we obtained the data using two spectrometer field settings to study both the low

and high excitation energy regions of 9B. The PID spectra for both these field settings are

shown in Figs. 4.1 and 4.2. In the high excitation region the charged particles transported

to the focal plane were uniquely identified by gating on the triton and deuteron loci enclosed

by the rectangular PID gates shown in Fig. 4.1. In the low-lying region the same procedure

was used to gate on the tritons as shown in Fig. 4.2. Those PID gates were used to generate

the final focal plane position spectra.

Figure 4.1: Two-dimensional PID plots for the high excitation region with a 9Be target. We
observe that two types of charged particles were detected at the focal plane, corresponding to
9Be(3He, d)10B and 9Be(3He, t)9B reactions.

To further cross check our particle identification, we performed some elementary calculations

for the expected TOF. These calculations were done for the charged particles expected at the

focal plane, based on their rigidity. The TOF calculation was performed by using the simple

relationship

TOF =
d

v
, (4.1)
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Figure 4.2: The two-dimensional PID plot for the low-lying excitation region with the 9Be
target. Only one type of charged particles (tritons) were detected at the focal plane, highlighted
by the rectangular box.

where d is the flight path of the ejectile particle within the K600 spectrometer (which is

on average 8.14 m) and v is the velocity of the particle. The velocity can be calculated

relativistically using,

v = c

√
1−

(
M

Etot

)2

(4.2)

where c is the speed of light, M is the rest mass and Etot is the total energy of the particle.

4.2 Background investigation with an empty frame

As mentioned before, the data for this experiment were obtained with the K600 magnetic

spectrometer running in a zero-degree mode. Therefore an accurate understanding of the

beam induced background was necessary. This background is prominent in 0◦ measurements

due to the location of the beam stop very close to the sensitive region of the spectrometer.

An additional source of background is from beam halo scattering off the target frame.
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Figure 4.3: Two-dimensional PID plots for the low-lying excitation field settings with an
empty frame, showing the background originating from the beam halo.

Figure 4.4: Two-dimensional PID plot for the high excitation region with an empty frame,
showing the background originating from the beam halo.
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To better quantify this background, we took additional data with an empty target frame.

Figs. 4.2 and 4.3 show a comparison of the PID spectra both with an empty frame and a 9Be

target for the lower excitation field settings, while Figs. 4.1 and 4.4 show a similar comparison

for the high excitation field settings.

4.3 Relativistic kinematics

I now briefly discuss the kinematics of two-body nuclear reactions. Our reaction has the form

a+B → C + d (4.3)

where a is the beam, B is the target, C is the recoil nucleus which breaks up into two lighter

fragments (C → e+f) and d is the light ejectile. In this work, the kinematics for the reaction

was calculated using relativistic formulae.

Figure 4.5: Representation of a two-body nuclear reaction in both laboratory and centre-of-
mass frames.
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Fig. 4.5 shows the difference between the laboratory and centre-of-mass frames for the above

reaction, assuming the masses of a, B, C and d are m1, m2, m3, and m4 respectively. Setting

c = 1, the Q-value for the two-body reaction is defined by

Q = m1 +m2 − (m3 +m4). (4.4)

If, for convenience, we set c = 1, the total energy of the laboratory frame takes the form

ET = E1 + E2 = E3 + E4. (4.5)

In the centre-of-mass frame, the total momentum is zero, this implies that the total energy

is given by

E ′T = (m1 +m2
2 + 2m2E1)

1/2. (4.6)

Then, after a lot of algebra, the laboratory scattering energy light ejectile can be simply

written as [64]

E3 =
1

E2
T − p21cos2θ3

{ET (m2E1 +
m2

1 +m2
2 +m2

3 −m2
4

2
)

± p1cosθ3[(m2E1 +m2
1 +m2

2 −m2
3 −m2

4)
2 −m2

3m
2
4

− P 2
1m

2
3sin

2θ3]}.

(4.7)

Eq. 4.7 is expressed in terms of masses, energies ET and E ′T and the laboratory scatttering

angle θ3. The ± sign in Eqn. 4.7 shows that there may be two solutions for E3. The quantity

that decides the ± sign is given by

α =
P1

ET

 1 +
m2

3−m2
4

E′
T
2

{[1− (m3+m4

E′
T

)2][1− (m3+m4

E′
T

)2]}1/2

 . (4.8)
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If α > 1, both solutions in Eqn. 4.7 are valid and if α < 1 only one solution is physically

realistic, since the value inside the square root cannot be negative. The energy of the recoiling

target-like nucleus in the laboratory frame is

E4 = ET − E3. (4.9)

The above algebra was used to write a relativistic kinematics program, whose purpose was to

calculate the excitation energies for different final-state nuclei from various nuclear reactions.

4.4 Target thickness determination

Prior to the actual experiment, we determined the 9Be and 26Mg target thicknesses using a

vacuum chamber in the iThemba LABS target laboratory [65], together with a 500 µm thick

Si surface barrier detector from ORTEC.

Figure 4.6: The decay chain of 226Ra α source.
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The silicon detector was calibrated using a 226Ra α source that was positioned on a target

ladder and placed inside a high-vacuum scattering chamber. The decay chain of 226Ra is

shown in Fig. 4.6. Clearly, one would expect at least four α peaks in the Si detector from

the decay of this nucleus. These α peaks would have energies ranging from 4.8 to 7.7 MeV

and are shown in Fig. 4.7 and 4.8.

Figure 4.7: α spectrum from the decay of 226Ra registered with the Si detector with and
without a 9Be target placed in between the source and the detector.
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Figure 4.8: 226Ra α spectra obtained with and without the 26Mg target foil.

The top spectra in these figures were obtained with no targets placed between the source

and the detector. The bottom spectra were obtained after placing the respective target foils

between the source and the detector. The peaks in the latter appear at lower energies and are

considerably wider than the peaks in the former. This is due to energy loss and straggling of

the α particles through the target foils. As the α’s emitted from the 226Ra source have well

known energies and the energy loss of charged particles within matter is directly proportional

to the amount of material (thickness) within the transversed distance. Therefore, the energy

shift in the α-peaks shown in Fig. 4.7 and 4.8 provide a direct measure of the thickness of

the target foils. I briefly describe the procedure to extract target thicknesses below. Thefirst step in the target thickness determination analysis was to fit the unattenuated α peaks.

The peaks were then fitted using a Levenberg-Marquardt χ2 minimization routine using a
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(a) (b)

(c)
(d)

Figure 4.9: Sample fits to different peaks from the α-source with no target.
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(a) (b)

Figure 4.10: Sample fits to different peaks from the α-source with 26Mg target.

(a) (b)

Figure 4.11: Sample fits to different peaks from the α-source with the 9Be target.
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lineshape function that was the convolution of a Gaussian with low energy exponential tails

on a flat background, that was an additional free parameter. Some representative peaks and

their corresponding fits are shown in Figs. 4.9 and 4.10, 4.11 and 4.11. The extracted α peak

centroids from these fits were then used to perform a linear energy calibration

EX(i) = a+ bX(i) (4.10)

where X(i) are the peak centroids. The a and b calibration coefficients from above were

used to determine the shifted peak energies from the α spectra obtained with the targets

in place. The shift in the measured α- energy for each peak was used to independently

extract the target thickness using an iterative algorithm that is described below. The final

target thickness for each target was eventually determined by taking a weighted mean of the

thickness values obtained from each α peak.

The first step in the iteration code was to input the values for the initial stopping powers ( dE
dX

)

for the unattenuated α energies, which were calculated using the SRIM [66] software. We

assumed 10% relative uncertainties in the stopping powers obtained from SRIM [66]. These

values were then fit to a polynomial function of order 4 to obtain the (dE/dX) values for

the unattenuated α energies shown in Figs. 4.12 and 4.13. Next the iteration procedure

followed the flow chart shown in Fig. 4.14 over infinitesimal slices of target material (∆X =

5 × 10−6 µm) over which (dE/dX) value was assumed to be constant, until the reduced α

energies matched the attenuated values shown in Figs. 4.7 and 4.8.
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Figure 4.12: Fit to the α stopping powers for 26Mg target. The interpolation was obtained
from a polynomial fit.

Figure 4.13: Fit to the α energies stopping powers for 9Be target. The interpolation was
obtained from a polynomial fit.
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Figure 4.14: Flow chart of the target thickness calculation code. Eα are any of the unat-
tenuated α energies (with no target). E ′α are the reduced α energies, measured after passing
through the targets.

The final target thickness results for both the targets are shown in Table 4.1. The dominant

contribution to the uncertainties in these results arises from the fits to the α peaks shown in

Figs. 4.9 to 4.11.

Table 4.1: Extracted 9B and 26Mg target thicknesses.

Target Thickness (µm)
9Be 4.41± 0.20
26Mg 3.86± 0.3
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4.5 Energy resolution improvement

The energy resolution obtained at the focal plane can be improved further in the offline data

analysis by using a lineshape correction technique [67]. This technique is used to correct

the data for abberations that are not fully corrected with the K and H coils. Since the

focal plane position depends on the scattering angle of the ejectile, this dependency can be

reduced by using a linear correction. The linear correction was achieved by plotting the TOF

of the tritons against focal plane position spectrum, shown in Fig. 4.15. It is easy to

Figure 4.15: TOF of tritons versus the focal plane position before the lineshape correction.

observe that the locus of points shown in Figs. 4.15 and 4.16 have a curved shape which

results in poor energy resolution. In order to further improve the resolution the linear fit

correction was performed, whose results are shown in Fig. 4.17. Although this is a standard

procedure followed in K600 experiments (see [61]), we do not observe a noticeable change in

the resolution of the focal plane spectrum due to this correction. This is shown in Figs. 4.18

and 4.19
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Figure 4.16: Zoom-in of TOF versus the focal plane position before the lineshape correction.

Figure 4.17: Zoom-in of TOF versus the focal plane position after the lineshape correction.
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Figure 4.18: Zoom-in of one-dimensional focal plane position spectra of calibration reaction
26Al before (blue) and after (red) linear correction.

Figure 4.19: Zoom-in of one-dimensional focal plane position spectra of calibration reaction
9B before (blue) and after (red) linear correction.
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4.6 Focal Plane Calibration

I now describe the energy calibration procedure for the focal plane spectra, corresponding to

both the high and low excitation energy regions in 9B. As mentioned in Section 4.1, the PID

spectra were used to generate the focal plane (position) spectra for both cases. For the high

excitation energy region we could not detect tritons from 26Mg(3He, t) reactions that could

be used for an energy calibration (with the same spectrometer field settings).

Figure 4.20: Top panel: Triton spectrum from 9Be(3He, t)9B reaction in the 14-18 MeV
excitation region. Bottom Panel: Calibration spectra obtained from 9Be(3He, d)10B and
26Mg(3He, d)27Al reactions. Only the peaks marked with asterisks were used for the energy
calibration. The shaded peaks are potential new states identified from this experiment. These
are discussed briefly in the next chapter.
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Figure 4.21: Top panel: Calibration spectrum from 26Mg(3He, t)26Al reactions. Bottom Panel:
Triton spectrum from 9Be(3He, t)9B reaction in the 0-4 MeV excitation region.

However, in this case we take advantage of 9Be(3He, d) and 26Mg(3He, d) reaction deuterons to

perform an energy calibration of the tritons from 9Be(3He, t). As shown in the upper panel of

Fig 4.20, the triton spectrum has considerable overlap with deuteron spectra obtained using

the same spectrometer field settings, for both the 9Be and 26Mg targets.

In the low excitation energy region, one type of charged particles (tritons) were detected at

the focal plane. The PID gates corresponding to the tritons groups were used to generate

the 26Mg(3He, t)26Al and 9Be(3He, t)9B position spectra, as shown in Fig. 4.21. The former

were used to calibrate the tritons from 9Be(3He, t), corresponding to the low lying excitation

region of 9B.
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In the following, I first discuss the analysis of the data for the high excitation region, high-

lighted by the triton peaks in Fig. 4.20. I elucidate the procedure used to remeasure the exci-

tation energy of the Ex ≈ 17076 KeV state, which was clearly populated with the 9Be(3He, t)

reaction and identified in Fig. 4.20. I defer the discussion on the fit procedure to obtain the

energy of the first 1
2

+ excited state (which is part of the continuum in the lower panel of

Fig. 4.21 ) to Section 4.7. This is mainly because the low energy region is dominated by

broad interfering resonances.

On the other hand, the focal plane spectra shown in Fig. 4.20 were fitted using the Levenberg-

Marquardt χ2 minimization routine described previously. For these spectra we observe that

the energy resolution of the spectrometer was comparable to (or worse than) the intrinsic

widths of the states that are highlighted. This feature allowed us to fit the triton peaks using

a simple function that consisted of a Gaussian on a flat background. Since the spectrometer

was optimised for the (3He, t) reaction, the deuteron peaks required a different fit function,

whose lineshape was the convolution of a Gaussian with a low energy tail. This is not sur-

prising, considering that the reactions had different kinematics. Some of the fits are shown

in Fig. 4.22. Once the peak centroids were determined, the focal plane spectra were energy

calibrated following a procedure that used another iterative algorithm, which is described

below. The first step in this procedure was to obtain the corrections due to energy losses

for both deuterons and the tritons within the target foils. The algorithm used a similar ap-

proach to the one used to obtain the target thicknesses. Similarly as in section 4.4, we start

off with an energy loss interpolation, which was performed using the stopping powers ( dE
dX

)

for deuterons and tritons within 26Mg and 9Be at energies ranging from approximately 10

to 70 MeV. These values were obtained from SRIM and shown in Figs. 4.23 and 4.24. The

stopping powers were then fitted to a polynomial function of order 4, which allowed a de-

termination of ejectile energy losses for arbitrary values of energies. The next step was to
generate the momentum distribution for the deuterons from both calibration targets using

Monte Carlo simulations. This is because of the reasonably large thickness of the foils. The
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(a) (b)

(c) (d)

Figure 4.22: Fits to the deuteron peaks from both 9Be(3He, d)10B and 26Mg(3He, d)27Al
reactions.
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simulations assumed a uniform probability distribution for the location of the reactions in

the targets, assuming the location to be a random variable

X = rndm× t, (4.11)

where rndm is a uniform random number generated between 0 and 1, and t is the target

thickness. Once a random reaction location was chosen, the energy loss of the incident 3He

beam was calculated for that location using a similar iterative algorithm as Fig. 4.14. After

traversing a linear distance X, the energy loss of the incoming beam would be

Eloss =

∫ X

0

dX (dE/dX)E. (4.12)

The above integration was performed numerically by dividing the targets into infinitesimal

slices and further assuming the energy loss (dE/dX) to be constant over each slice. The

(dE/dX) values for each value of E were obtained from the polynomial fits shown in Figs. 4.23

and 4.24. Once the reduced energies for the projectile were determined, these values were

fed into relativistic kinematics code to obtain the energies of the ejectiles at 0◦.
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Figure 4.23: Fit to the energy loss as a function of deuteron energy for 26Mg target.

Figure 4.24: Fit to the energy loss as a function of deuteron energy for 9Be target.
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Figure 4.25: Fit to the energy loss as a function of triton energy for 9Be target.

Next, a similar procedure was used to account for ejectile energy loss through the remainder

of the target. The final momenta for the simulated outgoing ejectiles at the focal plane

were histogrammed as shown in Fig. 4.26. This histogram shows that the momenta also had

a uniform distribution, similar to the uniform probability density function describing the

location of the reactions in the target. This similarity allowed us to assume that the average

momenta for the calibration deuterons were simply

p̄d(i) =
pmin(i) + pmax(i)

2
, (4.13)

where pmin(i) and pmax(i) correspond to reactions on the back and the face of the target

respectively. The uncertainties to these averaged values are [68]

σ(i) =

√
(pmax(i)− pmin(i))2

12
. (4.14)
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Figure 4.26: The momentum distribution for deuterons from 9Be(3He, d).

Figure 4.27 shows a flow chart of the iterative procedure described above. Further Monte

Carlo simulations were performed for all concerned reactions, under the assumption that they

take place at the centre of the targets. The above means that statistically (on average) it is

safe to assume that all the reactions took place at the center of the target.
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Figure 4.27: Monte carlo simulation procedure. Here, T is the target thickness, n_sim is the
total number of simulations.

In the final step of the calibration, the p̄d(i) values corresponding to well known and identified

excited states in 10B and 27Al (shown in Fig. 4.20) were determined using similar corrections

for energy losses. These calibrated the ejectile momenta at the focal plane of the spectrometer.

In Tables 4.2 and 4.3 I show the data that were used for the focal plane calibration using

this procedure.
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Table 4.2: Centroids of focal plane positions for deuteron peaks correspondidng to 10B excited
states, their corresponding averaged momenta and associated unccertainties.

µ(i) ∆µ(i) ¯Pd(i) ∆ ¯Pd(i)

682.016 0.022 441.141 4.570E-06

613.225 0.973 437.843 5.072E-05

516.441 0.008 433.101 0.0001

477.150 0.010 431.160 0.002

341.024 0.013 424.363 0.002

228.740 0.237 418.631 0.002

Table 4.3: Centroids of deuteron peaks corresponding to well identified levels in 27Al, their
corresponding averaged momenta and associated uncertainties.

µ(i) ∆µ(i) ¯Pd(i) ∆ ¯Pd(i)

589.769 0.012 436.740 2.243e-04

524.780 0.024 433.595 4.069e-03

499.344 3.75e-02 432.342 1.814e-03

457.815 0.031 430.282 1.823e-03

389.638 0.067 426.870 3.677e-03

381.151 0.062 426.445 2.760e-03

335.396 0.099 424.122 4.627e-03

328.549 0.141 423.773 3.705e-03

298.692 0.052 422.235 3.254e-03

238.863 1.54e-02 419.144 6.090e-03
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Finally, the focal plane calibration was performed using a quadratic fit to the peak centroids

µ(i),

p̄d(i) = a0 + a1µ(i) + a2µ(i)2. (4.15)

The results from our 9Be(3He, d) and 26Mg(3He, d) calibrations are shown in Figs. 4.28 and

4.29. The a0, a1, and a3 calibration coefficients were used to convert the 9Be(3He, t) peak

centroids to triton momenta.

Figure 4.28: Second order polynomial fit of P̄d(i) versus µ(i) for the 9Be(3He, d)10B reaction.
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Figure 4.29: Second order polynomial fit P̄d(i) versus µ(i) for the 26Mg(3He, d)27Al reaction.

The final step in the analysis was to correct for these momentum values (again assuming that

the reactions occurred at the center of the 9Be target) for the energy loss differences between

the deuterons and the tritons. Final 9B excitation energies were back calculated using these

corrected momenta and the relativistic kinematics code. Our extracted results are shown in

Table 4.4. The estimations of systematic uncertainties contributing to these measurements

are discussed in the next section.

73



Table 4.4: 9B excitation energies in the 14-18 MeV obtained from both calibration reactions.
The final energies are from a weighted mean of the results from both calibrations.

9Be(3He, d)10B calibration (keV) 26Mg(3He, d)27Al calibration (keV) Ex(9B) (keV)

14538± 2 14538± 2 14538± 19

14583± 4 14582± 4 14582± 19

14665± 1 14663± 1 14664± 19

14847± 3 14842± 3 14845± 19

16795± 1 16790± 1 16792± 19

17074± 3 17071± 3 17073± 19

17627± 1 ... 17627± 19

18329± 5 ... 18329± 20

4.6.1 Calculation of systematic uncertainties in the determined ex-

citation energies

The systematic uncertainties in the extracted excitation energies of 9B were calculated using

1σ shifts in beam energy, target thickness, Q-values, stopping powers, energy losses from

SRIM and the calculated average ejectile momenta. The dominant uncertainty arises from

the beam energy which had an uncertainty of ±50 keV, which arises from a conservative

estimate of the bending radius of the analysing magnet that is located upstream of the K600

spectrometer. The results of relative uncertainties from systematic effects in the determina-

tion of the excitation energy of the second T = 3/2 state in 9B are shown in Table 4.5.
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Table 4.5: Relative contributions of systematic uncertainties in our determination of the
excitation energy of the second T = 3/2 state in 9B.

Source of uncertainty ∆Ex/Ex [%]

Ground state masses 0.004

Beam energy 0.092

Target thickness 0.01

Ejectile momenta (p̄d) used for calibration 0.05

Stopping powers 0.008

Total 0.11

4.7 Analysis of spectra covering the low lying excitation

region in 9B

The low lying excitation region in such light nuclei are dominated by particle unbound states

that have large widths. Consequently 9Be(3He, t) the triton spectrum in this region is com-

posed of several wide overlapping peaks, that need to be deconvoluted from one another. In

order to achieve this, we use a lineshape fitting program called ALLFIT that was specially

developed to fit complicated spectra containing multiple peaks with complicated backgrounds

with continuum shapes [69–71]. The code uses a fitting function

y(x) = ε(x)[B(x) +
N∑
i=1

yi(x)] (4.16)

where ε is an efficiency function (which we set to unity), B(x) is a background function,

and the summation is over N individual peaks represented by y(i). The lineshape of each

peak is the convolution of an intrinsic lineshape I(x) and a resolution function R(x) written
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symbolically as

y(x) = Ii ⊗R. (4.17)

For narrow peaks, whose intrinsic widths are much smaller than the detector resolution, the

peak shapes reduce to just yi(x) = R(x). The convolutions in ALLFIT [?] are carried out

using a fast Fourier transform (FFT) routine. For spectrometer experiments, the shape of

the resolution function in ALLFIT depends on projectile kinematics in the laboratory frame,

and is given by

R(i) = R(xi)dxi, (4.18)

where xi is the appropriate kinematic variable and dxi is the width of channel i with respect

to x. Quite obviously, for K600 spectrometer data, x would be the laboratory momentum

for the projectile. There are two lineshape resolution functions that can be invoked by the

code. One is a simple asymmetric Gaussian, while the other is an asymmetric hyperGaussian

with both low and high energy exponential tails. The former is a special case of the latter,

which has a more complicated lineshape. For our analysis we assumed the peak lineshape

resolution function to be the asymmetric hyperGaussian, which can be more or less pointed

than a normal distribution, depending on an exponent parameter γ. The hyperGaussian

function is described in greater detail in Ref [69]. We also assume an intrinsic lineshapes for

the peaks to have functional forms, defined by Breit-Wigner function

I(Q) =
A(Γ/2)2

(Q−Q0)2 + Γ2/4
(4.19)

where Q0 is a position parameter that is related to the Q value, A is the amplitude (peak

height) and Γ is the intrinsic width of the state. The background was assumed to be of the

form of a cubic function

B(xi) = b0 + b1xi + b2x
2
i + b3x

3
i , (4.20)
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where xi is the appropriate kinematic variable (in this case the laboratory momentum of the

projectile), given a particular reaction Q value.

4.7.1 Results of the deconvolution using ALLFIT

As shown in Figs. 4.20 and 4.21, the focal plane position spectra for spectrometer experi-

ments display the higher energy ejectiles (corresponding to lower excitation energy) at higher

channels, due to rigidity considerations. Consequently, the peaks corresponding to lower ex-

citation energy appear at higher channel numbers. In order to provide a meaningful input

file for ALLFIT, it is first required to invert these spectra, so that peaks corresponding to

lower excitation energies appear on the left of the spectrum and vice versa. Therefore the

first step in this part of the analysis was to invert the 26Mg(3He, t)26Al and 9Be(3He, t)9B

focal plane spectra shown in Fig. 4.21. The flipped spectra are shown in Fig. 4.30. Since

the 26Mg(3He, t) spectrum consisted of distinct narrow peaks, similar to the high excitation

9B region and deuteron peaks shown in Fig.4.20, we used the same fitting routine described

in Sections 4.4 and 4.6 to obtain their peak centroids. Some characteristic fits to the triton

focal plane calibration spectrum are shown in Fig. 4.31.

As apparent from Fig. 4.30, the calibration requires a significant extrapolation to cover the

entire 9B excitation region of interest. We therefore use the triton peak corresponding to

the ground state of 9B as an additional calibration point. A similar iterative algorithm (as

shown in Fig. 4.27) was used to calibrate the tritons from 9Be(3He, t), after a careful consid-

eration of corrections due to energy losses for tritons within the target foils. The p̄t(i) values

corresponding to well known and identified excited states in 26Al (shown in the top panel

Fig. 4.30) were then determined.
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Figure 4.30: Top panel: Inverted calibration spectrum obtained from the 26Mg(3He, t)26Al
reaction. Bottom Panel: The inverted triton spectrum from the 9Be(3He, t)9B reaction in the
0-4 MeV excitation region.

These were used to calibrate the ejectile momenta at the focal plane of the spectrometer.

Table 4.6 lists the data that we used for the focal plane calibration. The centroid of the

ground state peak in 9B was obtained from ALLFIT (see Fig. 4.33) and included in the

calibration as well. The calibration coefficients obtained from a second order polynomial fit

is shown in Fig. 4.32. These coefficients are eventually used to convert the deconvoluted

9Be(3He, t) peak centroids into triton momenta.
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(a) (b)

Figure 4.31: Fits to selected triton peaks from 26Mg(3He, t)26Al reaction.

Table 4.6: Centroids of focal plane positions for triton peaks corresponding to the 9B ground
state and other 26Mg(3He, t)26Al excited states, their corresponding average momenta, and
associated unccertainties.

µ(i) ∆µ(i) ¯Pd(i) ∆ ¯Pd(i)

285.103 0.025 529.604 7.818E-05

561.663 0.101 513.540 8.065E-05

583.244 0.014 512.262 2.103E-05

600.924 0.139 511.205 4.863E-06

661.181 0.028 507.592 1.960E-5

726.712 0.175 503.606 1.318E-05

735.533 0.044 503.083 4.949E-05
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Figure 4.32: Second order polynomial fit of P̄d(i) versus µ(i) for the 26Mg(3He, t)26Al reaction.

The final result for the excitation energy of the first 1
2

+ state in 9B is shown in Table 4.7,

after taking into consideration all systematic uncertainties. Fig. 4.34 and 4.33 show the

fitted results on using ALLFIT. The fit does not yield the best χ2/ν(χ2/ν ≈ 3.2), but we

are still working on certain refinements to the fitting procedure. Nevertheless, we obtain nice

agreement with energy of the 2.3 MeV state in comparison with the ENSDF database on

NNDC [25].

Table 4.7: 9B excitation energies obtained using the 26Mg(3He, t)26Al calibration reaction.

26Mg(3He, t)26Al calibration (keV) Ex(9B) (keV) NNDC

0 0 0

1864± 1 1864± 15 ≈ 1500?

2354± 3 2354± 13 2345± 11
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Figure 4.33: Calibrated 9Be(3He, t) spectra. The red overlay shows the fit to the data using
ALLFIT.
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Figure 4.34: Calibrated 9Be(3He, t) spectra. The red overlay shows the fit to the data using
ALLFIT.
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CHAPTER 5

CONCLUSIONS

In conclusion, we performed spectroscopy both the high lying and as well as low lying

excitation region of the light unbound nucleus 9B using the 9Be(3He, t) reaction with the

K600 spectrometer at iThemba LABS. We identify four new tentative states in 9B, which

are not included in the lastest compilation of A = 9 nuclei. The chances that these peaks

arise from 12C and 16O contaminants are minuscule due to the large differences in reaction Q

values for these contaminants. Our determination of the energy of the second T = 3/2 state

in 9B agrees with the older 11B(p, t) measurement [29] while differing significantly from the

most recent measurement done by Charity et al [23]. We thereby rule out the longstanding

hypothesis that the requirement of a large cubic term to the IMME for the first A = 9,

T = 3/2 quartet is mainly due to coupling of the least-bound proton in 9C with the parti-

cle continuum [24, 72]. Clearly, if continuum coupling were the main reason for the IMME

violation, then the deviation from the quadratic IMME would be much worse for the second

T = 3/2 quartet, where the proton separation energies are much smaller. We do not observe

this. We also agree with the shell model predictions of Brodeur et al [22] that indicated

no significant isospin mixing in the excited quartet. Our findings have been accepted for

publication as a Rapid Communication with Physical Review C [73].
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We also used the ALLFIT code to deconvolute the low energy 9Be(3He, t) spectrum in order

to determine precisely the excitation energy of the 1
2

+ state in 9B for comparison with theo-

retical predictions. Our result is in agreement with [39,52,53] indicating excellent agreement

with the R-matrix calculations of Barker [43], while significantly disagreeing with microscopic

cluster model and single particle potential model estimates.
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