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Abstract

This thesis describes research work undertaken to study neutron pairing cor-

relations in 136Ba via the 138Ba(p, t) pair transfer reaction and to perform

high-precision spectroscopy of low-lying states in 136Cs using the 138Ba(d, α)

reaction. The aim of this project was to provide useful spectroscopic infor-

mation relevant for matrix element calculations of 136Xe neutrinoless double

beta decay. This work is relevant because neutrinoless double beta decays

are standard-model-forbidden lepton number violating processes, which if ob-

served, would establish the Majorana nature of the neutrinos and also deter-

mine the absolute mass scale of the light Majorana neutrinos.

Our experiments show a significant fragmentation of the two-neutron transfer

(p, t) strength to excited 0+ states in 136Ba, which could significantly affect

future matrix element calculations. Additionally we obtain information on

∼ 65 new states in 136Cs observed in this work. It is anticipated that these

new information will play a vital role in improving the precision of calculated

matrix elements for 136Xe double beta decays.



Contents

1 Massive Neutrinos and Double Beta

Decays 3

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Chirality of weak interactions . . . . . . . . . . . . . . . . . . . . . 5

1.1.2 Nuclear beta decays . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Massive neutrinos and double beta decays . . . . . . . . . . . . . . . . . . 11

1.2.1 Neutrino mass terms . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Neutrinoless double beta decay . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4 Nuclear Matrix Elements for 0νββ decays . . . . . . . . . . . . . . . . . . 18

1.5 Reducing the uncertainty on NME’s . . . . . . . . . . . . . . . . . . . . . . 20

1.6 Status of 136Xe→136Ba ββ decay experiments . . . . . . . . . . . . . . . . 25

1.6.1 Information on 136Cs intermediate states . . . . . . . . . . . . . . . 28

2 Direct Nuclear Reactions as a Probe of Nuclear Structure 31

2.1 General non-relativistic scattering theory . . . . . . . . . . . . . . . . . . . 32

2.2 Two Nucleon Transfer Reactions . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2.1 Two nucleon transfer reaction as a probe to study nuclear structure 43

2.2.2 The (d, α) reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.2.3 The (p, t) reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3 Pairing interactions and two-neutron transfer reactions . . . . . . . . . . . 46

2.4 Implication of pairing correlations on neutrinoless double beta decay matrix

elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

i



Status of pairing correlations in the ββ decay nuclei . . . . . . . . . 49

3 Experimental Setup 51

3.1 Overview of the Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Experimental Facility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Q3D Magnetic Spectrometer . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Focal-Plane Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5 Experimental details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5.1 138Ba(p, t)136Ba . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5.2 138Ba(d, α)136Cs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Data Analysis 59

4.1 Particle Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Peak fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Energy calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.1 Effective excitation energy transformations . . . . . . . . . . . . . . 61

4.3.2 Corrections due to energy loss in targets . . . . . . . . . . . . . . . 64

4.3.3 Uncertainties on effective excitation energy . . . . . . . . . . . . . . 66

4.4 Cross Section Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.1 Elastic scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Choosing the optical model parameters . . . . . . . . . . . . . . . . 68

Estimating the correct target thickness . . . . . . . . . . . . . . . . 69

4.4.2 Beam particle normalization . . . . . . . . . . . . . . . . . . . . . . 70

4.4.3 Dead time corrections . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4.4 Dark current correction . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4.5 Solid Angle Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4.6 Slit offset calibration . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4.7 Uncertainties in Cross-Section . . . . . . . . . . . . . . . . . . . . . 74

4.5 DWBA Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5.1 DWUCK4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

ii



4.6 Identification of impurities . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 138Ba(p, t)136Ba Results 79

5.1 Energy Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Elastic scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3 DWBA Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3.1 Jπ = 0+ states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3.2 Jπ = 1− states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3.3 Jπ = 2+ states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3.4 Jπ = 3− states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3.5 Jπ = 4+ states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3.6 Jπ = 5− states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3.7 Jπ = 6+ states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3.8 Jπ = 7− states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3.9 Tentative assignments . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3.10 Indefinite assignments . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.4 Neutron pairing correlations in 136Ba . . . . . . . . . . . . . . . . . . . . . 101

6 138Ba(d, α)136Cs Results 103

6.1 Energy Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2 Elastic scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.3 DWBA Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.4 Jπ Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.4.1 Natural Parity States . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Jπ = 1− states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Jπ = 2+ states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Jπ = 3− states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Jπ = 4+ states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Jπ = 5− states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.4.2 Unnatural Parity Assignments . . . . . . . . . . . . . . . . . . . . . 116

iii



6.4.3 Tentative Jπ Assignments . . . . . . . . . . . . . . . . . . . . . . . 116

6.4.4 Indefinite Assignments . . . . . . . . . . . . . . . . . . . . . . . . . 118

7 Conclusions and Future Work 119

A Relativistic Kinematics 122

B Description of DWUCK4 input file used for DWBA Analysis 126

C 138Ba(p, t)136Ba Angular distributions 130

D 138Ba(d, α)136Cs Angular distributions 144

Bibliography 154

iv



List of Figures

1.1 Neutrino mass hierarchy obtained from solar and atmospheric oscillation

data. The color coding shows the proportion of each flavor eigenstate in

the respective mass eigenstates [14]. . . . . . . . . . . . . . . . . . . . . . . 13

1.2 The mass parabolas for A = 136 nuclei. 136Xe is stable against ordinary

beta-decay but unstable against double beta-decay. Figure extracted from

Ref. [18]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Left panel: 2νββ decay. Right panel : 0νββ decay. . . . . . . . . . . . . . 17

1.4 Neutrinoless double beta-decay matrix elements for various isotopes calcu-

lated using different methods. Figure obtained from Ref [26]. . . . . . . . . 19

1.5 Cutaway view of the EXO-200 setup [70] . . . . . . . . . . . . . . . . . . . 27

1.6 Schematic representation of the KamLAND-ZEN detector. At the center

of the detector is the 3.08 m balloon filled with enriched 136Xe [68]. . . . . 28

1.7 〈mββ〉 as a function of the lightest neutrino mass. The shaded regions

for the normal hierarchy (NH) and the inverted hierarchy (IH) are the

current limits set by neutrino oscillation experiments. The horizontal blue

band is the current 90% C.L. limits on 〈mββ〉 set by the KamLAND-Zen

experiment [66]. Currently, KamLAND-ZEN provides the most stringent

limit on the masses of light Majorana neutrinos. . . . . . . . . . . . . . . . 29

1.8 Triton spectrum from the 136Xe(3He, t)136Cs reaction, observed with the

the Grand Raiden Spectrometer at RCNP. Figure extracted from Ref. [48]. 29

v



2.1 Quantum mechanical description of scattering. An incident plane wave

results in a spherical scattered wave due to the scattering potential. For a

detector placed at an angle θ with respect to the direction of the incident

particles, kout = kβ is the momentum of the scattered wave in the reaction

channel β while kin = kα is the incident momentum of Ψinitial. Picture

taken from Ref. [90]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1 The tandem Van de Graff accelerator hall at MLL. The tandem is shown

in orange and the analyzing magnet is painted blue. . . . . . . . . . . . . . 52

3.2 Schematic representation of the Stern-Gerlach ion source at the MLL.

Adapted from Ref [141]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 A schematic representation of the MP tandem accelerator used at MLL. . . 54

3.4 Schematic of the Q3D spectrometer . . . . . . . . . . . . . . . . . . . . . . 55

3.5 Cartoon depicting the response the of the cathode-strip detector to a

charged particle interaction. Figure obtained from Ref. [145]. . . . . . . . . 56

3.6 Cross sectional schematic view of the focal plane detector taken from

Ref. [145] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1 Particle identification spectra - left panel: ∆E −∆E1, partial energy loss

of the ejectiles in the two proportional counters. Right panel: ∆E − E

spectrum from the second proportional counter and the plastic scintillator.

In the ∆E − E spectra it is difficult to distinguish between the protons

from 138Ba(d, p) and deuterons from 138Ba(d, d) as the energy deposited

by these two ejectiles is very similar. However the tritons from 138Ba(d, t)

have comparatively less energy and thus higher energy loss (compared to

the deuterons and protons) and thus the left blob in the right figure. The

energy loss information from the ∆E − E spectra can then be easily used

to deduce the position of the tritons in the ∆E −∆E1 spectrum. . . . . . 60

4.2 A sample fit to the uncalibrated 1866 keV peak in 136Ba. The lineshape

function is the convolution of a Gaussian with a low energy exponential

tail on a flat background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

vi



4.3 Least squared fit to energy loss values obtained from SRIM [151] for α par-

ticles passing through a 94MoO3 target. The lowest order polynomial that

adequately describe the SRIM output values within the required energy

range was found to be 4. This procedure was repeated for all the charged

particle-target combinations encountered in this analysis. . . . . . . . . . 65

4.4 A schematic representation depicting the path of the charged particles

through the target material. Assuming the reaction occurs at the center

of the target, the projectile with energy E passes through the backing and

half the target material where it loses energy E − Eloss. The resulting

ejectile with energy Enew then passes through the other half of the target

where it additionally loses energy (Enew−E ′loss) before it is detected at the

focal plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5 Schematic representation of the Q3D opening with the slits. . . . . . . . . 72

4.6 Linear fit to the ratio of dead-time corrected elastic peak area over Scaler1

as a function of different x-slit width. . . . . . . . . . . . . . . . . . . . . 73

5.1 Excitation energy spectrum for 136Ba at θlab = 15◦. The triton spectra

were collected at 4 different momentum settings up to 4.6 MeV. All the

0+ states identified from this experiment are indicated. The red arrows

indicate new states observed in this work. . . . . . . . . . . . . . . . . . . 80

5.2 Energy calibrations for the 138Ba(p, t) reaction at 4 different momentum

bites. The small x and y uncertainties are included in the image. The first

three bites were calibrated using known excitation energies in 136Ba. The

4th bite is calibrated using 134Ba excitation energies that were extracted

using the procedure described in Section 4.3. . . . . . . . . . . . . . . . . . 81

vii



5.3 Experimental elastic scattering angular distributions for 23 MeV protons

on 138Ba compared with DWBA angular distribution. Global proton opti-

cal model parameters used are from Becchetti and Greenlees (BG) [154],

Koning and Delaroche (KD) [155], Varner et al. [156], Menet et al. [157]

and Walter and Guss (WG) [158]. The proton OMP that best reproduces

the elastic scattering data is the one by Varner et al.. [156]. This OMP is

further used in the DWBA analysis. . . . . . . . . . . . . . . . . . . . . . . 86

5.4 DWBA angular distributions from DWUCK4 for the ground state us-

ing different triton optical model parameters. The OMP from Li et al.

(LLC) [159] results in a better fit to the data compared to the one recom-

mended by Becchetti and Greenlees (BG) [160]. . . . . . . . . . . . . . . . 87

5.5 0+ states populated in this (p, t) reaction. The measured cross-sections are

compared to normalized DWBA curves. . . . . . . . . . . . . . . . . . . . . 102

6.1 Focal plane spectra at θlab = 10◦ for 138Ba(d, α) (bottom), 94Mo(d, α) and

92Zr(d, α) (top) reactions. The three spectra were obtained with the same

field settings. The red labels (in the top panel) mark the excitation energies

(in keV) of 92Nb [149] while black labels mark well known 90Y states [150].

In the 138Ba(d, α) spectrum, the blue labels are for the previously known

states and all the other peaks are new states identified in this work. Some

of the most prominent ones are labeled in red. . . . . . . . . . . . . . . . . 104

6.2 Energy calibration for 138Ba(d, α)136Cs reaction using effective excitation

energies from 92Zr(d, α)90Y and 94Mo(d, α)92Nb. . . . . . . . . . . . . . . 105

6.3 Experimental elastic scattering angular distributions for 22 MeV deuterons

on 138Ba, compared with DWBA cross sections. The global deuteron OMPs

used for comparison are An and Cai [178], Han et al. [179], Bojowald et

al. [180] and Perey et al. [181]. The deuteron OMP that best reproduces

the data is the one provided by An and Cai [178]. . . . . . . . . . . . . . . 106

viii



6.4 136Ba(α, α) elastic scattering data obtained from Ref. [184] compared to

theoretical DWBA elastic scattering cross sections obtained using DWUCK4

that used α OMP sets from Refs. [183–185, 188]. Clearly the α OMP set

recommended by Ref. [184] best reproduces the experimental data. . . . . . 107

6.5 140Ce(α, α) (top) and 130Te(α, α) (bottom) elastic scattering data obtained

from Refs. [186,187] compared with our DWBA calculations using the op-

tical model parameter sets of Ref [183–185]. . . . . . . . . . . . . . . . . . 108

B.1 Sample DWUCK4 input file for L = 3 transfer in 138Ba(p, t)136Ba reaction

and L = 4 in 138Ba(d, α)136Cs. For the purpose of illustration, the various

input blocks are labeled. Description of each block is provided in the text. 126

ix



Introduction

Ever since Pauli postulated the existence of neutrinos, observing neutrinos and studying

their properties has been an exciting field of research. This is mainly because neutrinos

are massive (with their masses being many orders of magnitude smaller than the masses

of the other elementary fermions) and their cross sections for interaction with matter are

minuscule (σ ∼ 10−44 cm2). Additionally, neutrinos are also the only neutral elementary

fermions. Their massive and electrically neutral nature opens up the possibility of neu-

trinos being their own antiparticles, i.e. they are Majorana fermions. Currently, there

is a lot of experimental activity underway all over the world to establish the Majorana

nature of neutrinos. This is because the most popular explanation for the smallness of the

neutrino masses is based on the assumption that lepton number is violated at large scale

(∼ 1015 GeV) [1]. If this were the case, then neutrinos would have to be Majorana parti-

cles. A clear-cut validation of the Majorana nature of neutrinos would be the observation

of neutrinoless double beta (0νββ) decay, which can only be probed in a handful of nuclei.

The motivation of this thesis is to study the structure of A = 136 nuclei that are rele-

vant for the 0νββ decay of 136Xe→136Ba. We accomplished this using the 138Ba(p, t) and

138Ba(d, α) two nucleon transfer reactions. The motivation for the 138Ba(p, t) reaction was

to study neutron pairing correlations in 136Ba. We also used the 138Ba(d, α) reaction to

achieve a high resolution spectroscopy of low-lying states in 136Cs. The latter reaction is

not particularly selective and can produce higher spin states due to the large momentum

mismatch between the incoming deuteron and outgoing alpha particles. The (p, t) reac-

tion on the other hand selectively produces natural parity states with low orbital angular

1



momentum transfer. It is hoped that these spectroscopic information will be beneficial

to constrain 0νββ decay matrix element calculations for the special case of 136Xe.

This thesis is divided into 7 chapters. In Chapter 1 I give a brief description of weak

interactions in the context of massive neutrinos. I follow this with a discussion on neutri-

noless double beta decays with emphasis on the challenges faced in calculating ββ decay

matrix elements. I also discuss briefly nuclear structure information that can be used to

improve or constrain these calculations, before concluding the chapter by bringing to the

reader’s notice why neutrinoless double beta decay of 136Xe is interesting. In Chapter 2

I briefly discuss direct nuclear reactions in the context of the (d, α) and (p, t) reactions

as special cases. One section is dedicated to the discussion of pairing correlations and its

implication for 0νββ matrix elements. I conclude the chapter with a discussion on the

status of pairing correlation studies in several double beta decay candidates. In Chap-

ters 3 and 4, I describe the MLL experimental facility where the experiments were per-

formed and the data analysis procedures used to get the final results, which are discussed

in Chapters 5 and 6. Chapter 7 briefly discusses the conclusions and future directions.

2



1 Massive Neutrinos and Double Beta

Decays

I have done a terrible thing, I have postulated a particle that

cannot be detected

Wolfgang Pauli

1.1 Introduction

The standard model of particle physics [2] describes fundamental particles and their in-

teractions using a renormalizable field theory, which is based on a SU(3)×SU(2)×U(1)

gauge symmetry. Its formalism classifies elementary particles (and their antiparticles)

in three generations of spin-1/2 quarks and leptons, such that the interactions between

the fermions are mediated via the exchange of spin-1 gauge bosons. This classification is

depicted below.  u

d

 ,

 c

s

 ,

 t

b

 quarks

νe
e−

 ,

νµ
µ−

 ,

ντ
τ−

 leptons

(1.1)

The quarks interact via the strong, electromagnetic and weak interactions while the lep-

tons experience only the electromagnetic and weak forces. The spin-1 force carriers for

the electromagnetic, weak and strong interactions are the photons, W±, Z0 bosons and
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the gluons respectively. The photons and gluons are massless, while the W±, Z0 bosons

are extremely massive (MW± ∼ 80 GeV, MZ ∼ 90 GeV). The large masses of the weak

interaction bosons is due to a spontaneous breaking of the local SU(2) × U(1) gauge

symmetry via the Higgs mechanism [3]. This further leads to the requirement of atleast

one additional spin-0 scalar (Higgs) boson.

Below are listed some of the crowning achievements of the standard model.

1. It incorporates the theory of Quantum Chromodynamics (QCD), within which the

inherent SU(3) symmetry is unbroken (leading to massless gluons), with an addi-

tional quantum number called ‘color’ assigned for the quarks. The color charge for

quarks and gluons naturally explains the short-ranged nature of the strong interac-

tion. Furthermore, since the gluons also interact among themselves, in addition to

the usual quark-gluon couplings, observed QCD phenomena (such as quark confine-

ment) are natural consequences of the model.

2. It successfully unified the electromagnetic and weak interactions in an ‘electro-weak’

theory, while correctly predicting the masses of the W±, Z0 bosons and the existence

of the top and charm quarks, in addition to the Higgs boson [2, 3].

3. Most importantly, the Higgs field that generates the masses of the W± and Z0

bosons (while causing the photons to remain massless) is also sufficient to explain

the mass generation of the quarks and charged leptons.

Despite the above, and having withstood stringent experimental probes over several years,

the standard model still has several limitations. Some of the most important ones concern

the properties of the neutral leptons (the neutrinos) listed in Eq. (1.1). Unlike the charged

leptons, neutrinos only participate in weak interactions and have very small (unknown)

masses which makes them difficult to detect experimentally. Before delving into a dis-

cussion on neutrino properties, it is important to briefly discuss some salient features of

the theory of weak interactions, which is a vital component of the standard electroweak

model.
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1.1.1 Chirality of weak interactions

We first take into consideration that quarks and leptons are spin-1/2 fermions and are

thus best described by 4-component Dirac fields (or spinors). Using the notation where

~ = c = 1, the Dirac equation for spin-1/2 fermions is

(~α.~p+ β m) Ψ = HΨ (1.2)

where,

~α =

 0 ~σ

~σ 0

 , β =

I 0

0 −I

 . (1.3)

The equation can be written in a more succinct form by introducing the 4 gamma matrices

γµ ≡ (β, β~α), so that it reduces to

(iγµ∂µ −m)Ψ = 0, (1.4)

where Ψ is a 4-component column vector (for each spin projection, corresponding to

both positive and negative energy solutions), given that the gamma matrices satisfy the

anticommutation relation

{γµ, γν} = 2 gµν . (1.5)

The adjoint of Dirac equation is written as

i∂µΨγµ +mΨ = 0, (1.6)

where Ψ ≡ Ψ†γ0 is the Hermitian conjugate of Ψ. The free particle plane-wave solutions

of the Dirac equation are well known

Ψ(x) = u(p)e−ipµx
µ

, (1.7)
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where the u(p) solve the momentum space equation

(γµpµ −m)u(p) = 0. (1.8)

Eq. (1.8) can easily be solved to obtain the positive energy solutions [4]

Ψ(x) =

√
E +m

2E

 χ±

~σ.~p
|E|+mχ

±

 e−ipµx
µ

, (1.9)

and the negative energy solutions [4]

Ψ(x) =

√
E +m

2E

 −~σ.~p
|E|+mχ

±

χ±

 eipµx
µ

, (1.10)

where χ± are two-component Pauli spinors representing spin up and spin down states

respectively. It is important to note at this point that the negative energy solutions of

the Dirac equation are actually as positive energy antiparticle solutions in the Feynman-

Stückelberg interpretation [5]. In fact, the E < 0 solution correctly describes a particle

moving backwards in time [5]. This is equivalent to an antiparticle with E > 0 moving

forward in time. The
√

E+m
2E

‘normalization’ term in Eqs. (1.9) and (1.10) arises from

two contributions. One is from the equation of continuity for a relativistic wave equation,

which shows that the probability density per unit volume is proportional to twice the

total energy (i.e. there are 2E particles per unit volume). The other
√
E +m term is

simply the normalization for u(p).

The antiparticle solution shown in Eq. 1.10 can be expressed in simpler terminology as,

Ψ(x) = v(p)eipµx
µ

= v(p) ei(Et−~p.~x). (1.11)

which satisfies the Dirac equation for antiparticles

(γµpµ +m) v(p) = 0. (1.12)
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The above complements Eq. (1.8). The relativistic equations for spin-1/2 particles and

antiparticles can be written in a more compact form using the Feynman slash notation

(�p = γµpµ)

(�p−m)u(p) = 0

(�p−m)v(p) = 0.
(1.13)

Likewise, the Dirac equation for an electron in an electromagnetic field is,

(i��5− e��A−m) Ψ = 0, (1.14)

where ��5 = γµ∂µ and Ψ includes both the positive and negative energy solutions. In order

to represent the negative energy solutions as positive energy solutions of the positrons,

one needs to define a charge conjugation operation,

ĈΨ = Ψc, (1.15)

where Ψ represents a particle state and Ψc is it’s corresponding antiparticle state, both

with positive energies. The antiparticle state should ideally satisfy a similar equation

(i��5+ e��A−m) Ψc = 0. (1.16)

It can easily be shown [4] that Ψc is a solution of Eq. (1.16) if

Ψc = Ĉγ0Ψ∗ = ĈΨ̄T , (1.17)

where a suitable choice for the charge conjugation operator is Ĉ = iγ2γ0 [4, 5].

The case of massless fermions

In the limit as m → 0, E → ±|~p|. Therefore, for massless spin-1/2 particles, Eq. (1.9)

reduces to

Ψ(x) =
1√
2

 χ±

~σ.p̂ χ±

 e−ipµx
µ

. (1.18)
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Here it is important to define a new observable called helicity, given by the operator

Ĥ = ~σ . p̂, (1.19)

whose eigenvalues quantify the two projections of the particle’s intrinsic spin along its

direction of momentum. A particle with positive helicity has its spin aligned along the

direction of its motion (is a right-handed particle) and vice versa. Defining a helicity

eigenstate is essential as it is not possible to define the rest frame of a massless particle

(which moves with velocity c) to quantify its spin projections. However, it is also impor-

tant to note that helicity is not a Lorentz invariant quantity for massive particles.

In order to better understand helicity eigenstates, a more convenient representation is

the Weyl (or chiral) representation for α and β matrices [5]

~α =

−~σ 0

0 ~σ

 , β =

 0 I

I 0

 . (1.20)

Similarly as before, the 4-component solutions can be written as two 2-component spinors

for both E > 0 and E < 0 solutions

Ψ =

 χ

φ

 . (1.21)

Then for m = 0, the Dirac equation leads to two uncoupled equations

− ~σ.~p χ = E χ, (1.22)

~σ.~p φ = E φ. (1.23)

The positive energy solution of Eq. (1.22) satisfies,

~σ.p̂ = −χ, (1.24)
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while the negative energy solution satisfies

~σ.(−p̂) = χ. (1.25)

Translating this to antiparticles means that Eq. (1.24) describes a left-handed particle

(with negative helicity), while Eq. (1.25) describes a right-handed antiparticle (moving

backwards in time). Similarly, Eq. (1.23) describes a left-handed antiparticle and right-

handed particle. Based on the above, one can define the chirality operator

γ5 ≡ iγ0γ1γ2γ3 =

−I 0

0 I

 (1.26)

and the left and right chirality eigenstates ΨL =

 χ

0

 and ΨR =

 0

φ


so that

γ5

 χ

0

 = −

 χ

0

 (1.27)

corresponds to left-handed fermions, while

γ5

 0

φ

 =

 0

φ

 (1.28)

corresponds to right-handed fermions. In the extreme relativistic limit the γ5 operator is

the same as the helicity operator (1.19). However, as noted previously, helicity is not a

relativistically invariant quantity for massive fermions. In order to remove the reference

frame dependence in describing the ‘handedness’ of a massive fermion, one has to resort

to the projection operator

P =
1

2

(
1∓ γ5

)
, (1.29)
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which projects out the left or right handed components of a general spinor

Ψ = ΨL + ΨR =

 χ

φ .

 (1.30)

1.1.2 Nuclear beta decays

The standard model assumes that nuclear beta decays (and other weak decays) are caused

by purely V −A (vector−axial vector) interactions. In such processes, the leptons interact

via charged current weak interactions, where the interaction is described as a combination

of only γµ and γµγ5 bilinear terms. This is because overwhelming experimental evidence

shows that parity is maximally violated in weak interactions and that neutrinos are left-

handed particles [3, 6].

In a field theoretical description, the weak interaction Hamiltonian for semi-leptonic pro-

cesses (such as nuclear beta decays) is written as a four-point current-current interaction

HW =
GF√

2
JµJ

µ†, (1.31)

considering that the W bosons are extremely massive. In the above, GF is the universal

Fermi coupling constant and the charged weak current contains the sum of both hadronic

and leptonic components, which further satisfy maximal parity violation (and the fact

that neutrinos are experimentally observed to be left-handed). For the description of the

simplest semi-leptonic β-decay (i.e. neutron decay), the hadronic current can be written

(analogous to the electromagnetic current) as

Jµhad = φ̄p (gV γ
µ − gAγµγ5)φn, (1.32)

where gV and gA are the vector and axial-vector form factors. Similarly, the leptonic

current is

Jµlep = φ̄eγ
µ (1− γ5)φνe , (1.33)
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Here, the φ’s represent the quantum field operators describing the particles involved in the

decay. In the allowed approximation for β decays, the vector and axial-vector components

of weak interaction (γµ and γµγ5) reduce to the usual Fermi and Gamow-Teller transition

operators (τ± and ~στ±) in the non-relativistic limit. Based on the above, one can generate

left-handed neutrino fields using the projection operation on a general neutrino state Ψνe

by the operation

νeL =
1

2
(1− γ5)Ψνe . (1.34)

Therefore, the most general leptonic current for left-handed particle fields can be written

as

Jµlep = 2 (ēLγ
µνeL + µ̄Lγ

µνµL + τ̄ γµντL) , (1.35)

which includes the muon and tau sectors of the weak interaction as well. The fields of the

antiparticles are generated by the charge conjugation operation

(ΨL)c = Ĉγ0Ψ∗L = iγ2Ψ∗L

=
1

2
(1 + γ5)Ψc

= Ψc
R.

(1.36)

The above clearly shows that the handedness of antiparticles are opposite to those of the

particles. Therefore antineutrinos are right-handed. As a result of Eq. (1.36) the standard

model classification of elementary particles (shown in Eq.(1.1)) gets modified slightly, so

that the quark and lepton doublets only include left-chiral fields for particles. In this

representation the right-handed fields for the charged fermions are only part of the SU(2)

singlet [4].

1.2 Massive neutrinos and double beta decays

Until the late 1990’s, the standard model assumed that neutrinos were massless fermions.

However, there were indications much earlier (based on solar neutrino flux measurements)

that neutrinos could in fact have finite masses [7]. The ‘solar neutrino problem’ [8] sug-
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gested that the deficit of the observed solar neutrinos is because the neutrinos change flavor

while in flight. This phenomenon is called neutrino oscillation, as previously suggested

by Pontecorvo, Maki, Nakagawa and Sakata [1]. To date, the observation of neutrino os-

cillations in several independent experiments such as Super Kamiokande [9,10], SNO [8],

GALLEX [11], SAGE [12], K2K [13], etc, has confirmed that neutrinos do indeed change

flavor from one eigenstate to another in flight. This is only possible if neutrinos have

mass. These results imply that the left-handed neutrino fields νL do not represent states

with a definite mass. The flavor eigenstates that participate in weak interactions are in

fact mixtures of the mass eigenstates, given by
νe

νµ

ντ

 =


Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3



ν1

ν2

ν3

 . (1.37)

The 3×3 unitary matrix shown above is the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) [1]

neutrino mixing matrix. The probability that the flavor changes from νl → νl′ after a

time t is (assuming only 3 generations of neutrinos)

P (νl → νl′) =
3∑
i=1

|Uli|2|Ul′i|2 +
∑
j 6=i

UliUljU
∗
l′iU

∗
l′j exp

(−i(m2
i −m2

j)t

2p

)
, (1.38)

where p is the momentum of the neutrino νl, with p � mi. Clearly this probability os-

cillates as a function of time. Here m2
i −m2

j = ∆m2
ij is the mass squared difference for

the two neutrinos involved in the oscillation. As evident from Eq. (1.38), neutrino oscilla-

tion measurements can only determine the mass squared differences for the neutrinos and

not their absolute masses. Recent solar and atmospheric neutrino oscillation experiments

have shown that ∆m2
12 � ∆m2

13 ≈ ∆m2
23 [8]. Furthermore, since the atmospheric neu-

trino experiments only give the absolute value of ∆m2
13 (or ∆m2

23), it is not clear if the

third eigenstate is much heavier or lighter than the former two. Thus the neutrino mass

splittings can be of two types, the normal or inverted hierarchy, as shown in Fig. 1.1.
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Figure 1.1: Neutrino mass hierarchy obtained from solar and atmospheric oscillation data. The
color coding shows the proportion of each flavor eigenstate in the respective mass eigenstates [14].

1.2.1 Neutrino mass terms

Prior to the discovery of neutrino oscillations, the standard model electroweak Lagrangian

included the neutrino fields on a similar footing as the quarks and charged leptons. How-

ever there was one fundamental difference. The other fermion masses were generated via

Yukawa couplings of the fields to the Higgs doublet. The mass terms in the Lagrangian

were constructed using both left-handed and right-handed chiral fields. Since experimen-

tal evidence showed the absence of right-handed neutrinos, the neutrino mass term could

not be constructed similarly. The neutrino fields had no right-handed singlet components,

which naturally explained massless neutrinos in the standard model.

With the discovery of neutrino oscillations clearly a new explanation was required to

describe the generation of neutrino masses. In the simplest modification to the mini-

mal standard model, massive neutrinos can be generated similarly as it was done for the

charged fermions. This introduces sterile right-handed neutrino fields as SU(2) singlets.

Assuming that the neutrino fields satisfy the Dirac equation, they can be described by

the Lagrangian

L = ν̄ (iγµ∂µ −mD) ν , (1.39)
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where mDν̄ν is called the Dirac mass term. In the presence of neutrino fields of both

chiralities, the mass term is simply

Lmass = −mD(ν̄LνR + ν̄RνL) , (1.40)

which requires four neutrino chirality solutions (as expected by the Dirac equation), two

of which are sterile. The right-handed sterile fields only give the neutrinos masses, they

do not couple with the weak interaction and are not realized experimentally otherwise.

Although the Dirac mass term conserves lepton number, its formalism is unsatisfactory.

For example, if the neutrino mass generation mechanism were similar to the charged

fermions, the extreme smallness of the neutrino mass compared to the others would re-

quire an unnaturally weak Yukawa coupling to the Higgs field. A second alternative was

proposed by Ettore Majorana, who suggested to build a mass term with only two active

neutrino fields, both of the same chirality. This is only possible if the neutrino is its own

antiparticle which is highly likely as neutrinos are electrically neutral. In this case, since

a right-handed field can be described as (see Eq. (1.17))

ΨR = ĈΨ̄T , (1.41)

the Majorana neutrino field can be expressed similarly as in Eq. 1.30

ν = νL + νR

= νL + Ĉν̄T

= νL + νcL .

(1.42)

Then clearly νc = νcL+νL = ν. Therefore a Majorana fermion is its own antiparticle. The

Majorana mass term can thus be constructed from purely left-handed or right-handed

fields without having to invoke sterile neutrinos,

Lmass = −1

2
mL (ν̄cLνL + ν̄Lν

c
L) . (1.43)
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The above clearly couples neutrinos to antineutrinos, which can be viewed as the creation

of two particles, thereby leading to violating of lepton number by ∆L = 2. Therefore

Majorana neutrinos would lead to a rare (yet-to-be-observed) lepton number violating

process called neutrinoless double beta decay which is described in Sect. 1.3. However,

the Majorana mass term in Eq. (1.43) unfortunately violates the SU(2)L × U(1) gauge

symmetry of the standard model.

A very appealing alternative to explain the smallness of neutrino masses uses both Dirac

and Majorana terms, where the Lagrangian has both left-handed and right-handed fields,

Lmass = −1

2

(
ν̄L (νR)c

) mL mD

mD mR

(νL)c

νR

+ h.c. (1.44)

Diagonalizing the 2× 2 mass matrix shown above, one arrives at the solutions

m1,2 =
1

2

[
(mL +mR)±

√
(mL −mR)2 + 4m2

D

]
. (1.45)

Due to the breaking of the gauge symmetry mentioned above, one can set mL = 0. Further

assuming mR � mD, it is easy to see that

m1 =
m2
D

mR

(1.46)

and

m2 = mR

(
1 +

m2
D

m2
R

)
≈ mR . (1.47)

Clearly, such a prescription ensures that the large value of mR suppresses the mass of

the light neutrino. This is called the see-saw mechanism [1], which naturally explains

the smallness of neutrino masses. It requires neutrinos to be Majorana particles and the

additional existence of an extremely heavy right-handed neutrino.
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1.3 Neutrinoless double beta decay

Double beta-decay is a rare process that can occur in only ∼ 35 naturally occurring ra-

dioactive isotopes. One such example is 136Xe ββ decay to 136Ba, shown in Fig. 1.2, where

the intermediate nucleus is 136Cs. The pairing energy between like nucleons makes the

even-even parent more bound, thus energetically forbidding a single beta decay to the

odd-odd intermediate nucleus. However, a two-neutrino double beta decay (2νββ) to the

grand-daughter is still energetically favorable and would occur with the emission of two

electrons and two neutrinos. This would effectively lead to two neutrons converting to two

protons, with the emission of 4 leptons as the final product. The 2νββ decay mode does

not violate any conservation laws and is a standard-model-allowed second-order transi-

tion. The decay can occur irrespective of whether the neutrinos are Dirac or Majorana

type. However, such decays are highly suppressed due phase space considerations, with

lifetimes of the order of 1019 − 1022 yrs [15–17].

Figure 1.2: The mass parabolas for A = 136 nuclei. 136Xe is stable against ordinary beta-decay
but unstable against double beta-decay. Figure extracted from Ref. [18].

The massive nature of neutrinos opens up another possibility, the 0νββ decay mode with

no neutrino emission. As mentioned previously, this is the (only) way one can ascertain

16



directly the Majorana nature of neutrinos. Unlike the 2νββ decay mode, where the phase

space is ∼ Q11, 0νββ decays are not limited by phase space (∼ Q5). But they are lepton

number violating and standard-model-forbidden. Both these decay modes are shown in

the Feynman diagrams in Fig. 1.3.

Figure 1.3: Left panel: 2νββ decay. Right panel : 0νββ decay.

The assumption that massive Majorana neutrinos would cause 0νββ decays is one of

the best motivated examples to search for physics beyond the standard model (BSM).

Although all postulated BSM theories require neutrinos to be Majorana particles, there

are several possible mechanisms that could cause 0νββ decays [19–22]. These include

the exchange of light or heavy Majorana neutrinos [21], presence of right-handed weak

interactions [23] or exotic interactions from R-parity violating SUSY models [24]. By far

the standard interpretation adopted (and preferred) by theorists is the one that involves

the mediation of light Majorana neutrinos. In general, the rate of a 0νββ decay depends

on contributions from all the possible lepton number violating mechanisms

[T 0ν
1/2]−1 =

∑
i

G0ν
i (Q,Z)|M0ν

i ηi|2 . (1.48)

where G0ν(Q,Z) is a phase-space factor, |M0ν
i | are the nuclear matrix elements (NME)

for the decay and ηi are the LNV parameters that depend on the mechanism driving the

process. If we assume that the dominant mechanism responsible for the decay is mediated

by the exchange of light left-handed Majorana neutrinos, the η parameter in Eq. (1.48)
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reduces to [1]

η =
〈mββ〉
me

, (1.49)

where, mββ =
∑3

k=1 mkU
2
ek is the effective Majorana mass of the electron neutrino. The

Uek are elements of the PMNS mixing matrix described earlier in this chapter, mk are

the light Majorana neutrino mass eigenvalues and me the electron mass. The 0νββ-decay

half-life can then be expressed as,

[
T 0ν

1/2

]−1
= G0ν(Q,Z)|M0ν |2

(
〈mββ〉
me

)2

. (1.50)

If 0νββ decays were observed, the Schechter-Valle theorem (also called the Black Box

theorem) [17, 22, 25] ensures that the neutrinos have to be Majorana fermions regardless

of the mechanism driving the decay. However, to get any further information on the

LNV parameters driving the decay (such as 〈mββ〉), one needs an accurate computation

of the nuclear matrix elements (NMEs) for the decay. To date there have been several

approaches undertaken by theorists world wide to evaluate these NMEs. As shown in

Fig. 1.4, currently there exists significant disparity in calculated values for several cases

depending on the method used. This is briefly overviewed in the section below, with an

emphasis on two of the most popular approaches.

1.4 Nuclear Matrix Elements for 0νββ decays

The nuclear matrix elements are calculated using different theoretical methods, the Quasi-

particle Random Phase Approximation (QRPA) [27–31], Interacting Shell Model (ISM) [32,

33], projected Hartree-Fock Bogoluibov (P-HBF) [34] method, Interacting Boson Model

(IMB) [35], and by Energy Density Functional Method (EDF) [36]. The difference in

these methods lie in their choice of valence space used, correlations included between the

nucleons and in the way the equations of motion for the effective Hamiltonian Heff are

solved. Current status of the 0νββ decay NME calculated using these approaches is shown

in Fig. 1.4. Of all the above, the ones most widely used are the Interacting Shell Model

(ISM) and Quasiparticle Random Phase Approximation (QRPA). These two approaches
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Figure 1.4: Neutrinoless double beta-decay matrix elements for various isotopes calculated using
different methods. Figure obtained from Ref [26].

are discussed below.

The Interacting Shell Model (ISM)

The shell model has been used widely to describe the properties of medium and heavy

mass nuclei [26, 37, 38]. The effective nuclear interaction Heff used in the shell model

is initialized by fitting the bare nucleon-nucleon interaction to two-nucleon scattering

data [26].The model utilizes a valence space that comprises of active nucleons occupy-

ing only a few single particle states outside the Fermi surface. However, the effective

Hamiltonian for this configuration space is exactly diagonalized, resulting in shell model

states that account for all correlations between the valence nucleons. As a result, the

shell model can quite accurately describe the ground state properties of the nuclei and

low-lying excitation energy spectra [26, 37, 38]. The model also quite successfully repro-

duces the experimental single β and 2νββ decay rates if the strength of the axial-vector

coupling constant (gA) is quenched by ∼ 20% − 30% [39, 40]. A major limitation of this

model, however, is the restricted configuration space, which may further affect the pair-
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ing correlations that are important in 0νββ decays [18]. As seen in Fig. 1.4, the M0ν ’s

calculated using the shell model are lower compared to most other methods.

Quasiparticle Random Phase Approximation (QRPA)

QRPA calculations consider only a limited number of correlations between the valence

nucleons and so can use a much larger configuration space compared to the shell model [18,

27,30]. In fact, QRPA calculations are performed using at least two major oscillator shells

around the Fermi surface. In QRPA calculations, pairing correlations are performed in

the BCS approximation [41]. However, the strengths of the interaction has to be adjusted

to correctly reproduce the neutron and proton pairing gaps in both the initial and final

nuclei. Additionally, the decay rate for β and ββ are found to be very sensitive to the

strength of particle-particle interaction (gpp) [42–44]. This constraint is overcome by fixing

gpp so it correctly reproduces the ββ decay strength. The same value of gpp is then used

for the 0νββ decay calculations. As the QRPA calculations do not account for all the

correlations, they tend to overestimate the 0νββ decay matrix elements. This is evident in

Fig. 1.4. The parameters in both the ISM and QRPA are adjusted to match experimental

data. Therefore, the availability of precise experimental data is highly important for both

calculations.

1.5 Reducing the uncertainty on NME’s

To evaluate a NME, the M0ν is expressed as a sum of the Gamow-Teller (MGT ), Fermi

(MF ) and tensor matrix (MT ) elements [15]

M0ν = M0ν
GT −

(
gV
gA

)2

M0ν
F −M0ν

T . (1.51)

The contribution from the tensor matrix element is negligibly small and is usually ig-

nored [19]. In the case that the decay goes from the 0+ ground state of the (A,Z) nucleus

to the 0+ ground state of the (A,Z + 2) nucleus, the Fermi and Gamow-Teller matrix
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elements is approximated as [15]

MGT ∼ 〈0+
f ‖

1

2

∑
ij

~σ(i).~σ(j)τ±(i)τ±(j)‖0+
i 〉 (1.52)

and

MF = 〈0+
f ‖

1

2

∑
ij

τ±(i)τ±(j)‖0+
i 〉, (1.53)

where ∑
ij

τ±(i)τ±(j) =

(∑
i

= τ±(i)

)2

= (T±)2 . (1.54)

The T± isospin raising/lowering operators in the Fermi matrix element connect the iso-

baric analog states (IAS) in the two nuclei. Thus, in Eq. (1.53) MF is nonzero only if the

Coulomb interaction mixes the IAS in the (A,Z + 2) nucleus with its ground state. As

a consequence, the contribution to M0ν from MF is small and the M0ν is dominated by

the Gamow-Teller part, MGT .

As is evident in Fig. 1.4, the matrix elements calculated using different theoretical ap-

proaches could differ up to a factor of 3. The discrepancies in the NMEs arises primarily

from the different approximations made to arrive at the solution of the nuclear many-body

problem. The use of the mean field in different ways generates single particle occupancies

of individual orbits that could differ significantly between different models. As mentioned

earlier, the use of different valence shells either underestimates or overestimates the NMEs.

Since the closest experimentally observable phenomenon that is similar to a 0νββ de-

cay is the 2νββ decay, which has already been observed in several nuclei, these data are

useful to set constraints on the nuclear structure calculations of the NMEs. The rate of

a 2νββ decay is [18] [
T 2ν

1/2

]−1
= G2ν(Q,Z)|M2ν |2, (1.55)

with

M2ν = M2ν
GT −

(
gV
gA

)2

M2ν
F . (1.56)
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The Gamow-Teller and Fermi matrix elements for this decay mode are similar to 0νββ

decay

M2ν
F = 〈f |

∑
a

τ+
a |n〉〈n|

∑
b

τ+
b |i〉 (1.57)

M2ν
GT = 〈f |

∑
a

σaτ
+
a |n〉〈n|

∑
b

σbτ
+
b |i〉 . (1.58)

As in the case of M0ν
F , isospin symmetry breaking leads to negligible contribution of M2ν

F ,

concentrating all the strength of M2ν in the M2ν
GT component. The Gamow-Teller matrix

element M2ν
GT is expressed as a sum of two Gamow-Teller transition matrix elements

M±
GT [17, 45, 46]. Therefore, the M2ν

GT± NME is calculated as a sum over all virtual 1+

states in the intermediate nucleus

M2ν
GT =

∑
m

M+
GT (m)M−

GT (m)

Qββ/2 +me + Ex(1+
m)− E0

, (1.59)

where Ex(1
+
m) − E0 is the difference in energy between the intermediate 1+ state and

the ground state of the parent nucleus. Furthermore, deformed-QRPA calculations for

2νββ decay 76Ge→76Se have shown that excited states in intermediate nucleus lying in the

region of the Gamow-Teller resonance contribute significantly to the matrix element of the

decay [47]. The GT± matrix elements have been extracted via charge-exchange reactions

such as (3He, t), (d,2 He) in most of the 2νββ decay candidates [17, 48–53] and are well

reproduced by the sum of the matrix elements through all the low-lying 1+ states in the

intermediate nucleus [17]. Therefore, to test the 2νββ decay matrix element calculations,

experimental information of the 1+ states in the intermediate nucleus is crucial. Below

I discuss some of the nuclear structure related considerations that are also important for

the NME calculations.

The closure approximation

Within the framework of perturbation theory, 0νββ decay NME’s are calculated assuming

that the decays proceed from the initial nucleus to the final nucleus via the intermediate

nucleus. This implies that wave functions of all the intermediate states (allowed by the
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nuclear structure model) are required in addition to the initial and final states. This

exact treatment (also referred to as non-closure methods) for the NME calculation is a

computationally expensive task, especially for heavy nuclei. For instance, for the 0νββ

decay of 76Ge, about 1.5 × 108 states in 76As have to be considered in the ISM calcu-

lations [54]. To by pass this, most calculations except QRPA [55] calculate the 0νββ

decay matrix elements in the closure approximation [56, 57]. In this method the ener-

gies of the individual intermediate states are replaced by an average energy 〈E〉. The

closure approximation correctly assumes that the momentum transfer due to the virtual

neutrinos in the 0νββ decay is much larger (∼ 100 MeV) than the difference in energy

between the ground state of the parent and the excitation energies in the intermediate

nucleus. Therefore structural details of the odd-odd intermediate nucleus can be ignored.

Comparative studies performed for 0νββ of 48Ca in the shell model have shown that the

matrix elements calculated using the closure methods reproduce the non-closure 0νββ

matrix elements to within 10% [26,58].

The dominant contribution to the NMEs calculated using non-closure methods originates

from low-lying intermediate states [58]. Taking advantage of this, calculations that go

beyond the closure approximation use a combination of both closure and non-closure

methods [54, 58]. In this approach, all excited states in the intermediate nucleus that

lie below a cut-off energy E are treated in the non-closure regime while the closure ap-

proximation is used for the higher lying excited states. An alternative approach is to set

the cut-off parameter N on the number of states of each Jπ in the intermediate nucleus.

The success of this method has been demonstrated for the 0νββ decay of 48Ca, 76Ge

and 82Se [54, 59] wherein, the matrix elements could be calculated to within ∼ 1% the

non-closure values.

Effect of deformation

Most of the nuclei involved in double beta decay are either spherical or weakly deformed,

except for the strongly deformed 150Nd. Differences in deformation between the two nu-

clei involved would require a significant rearrangement in the configuration of the valence

23



nucleons, which would further suppress the transition matrix elements for the decay [60].

It is well-known that the 2νββ matrix elements are comparatively larger when the par-

ent and the grand-daughter nuclei have a similar deformation but decrease rapidly as

the difference in deformation between the two nuclei increases. This for instance, has

been demonstrated in the deformed-QRPA formalism for nearly all the ββ decay partners

(A = 48, 76, 82, 96, 100, 116, 128, 130, 136 and 150) [47,61] and in the ISM calculations

for a fictitious case of 48Ti-48Cr [62]. The rate of the 2νββ decay is also used to constrain

the variables (for e.g. particle-particle interaction strength) in QRPA calculations before

calculating the 0νββ decay matrix element. Additionally, in the QRPA regime the ground

state wavefunctions of the parent and daughter nuclei are assumed to be BCS correlated

states [41]. A deformed nucleus cannot be described in the BCS approximation.

Nuclear deformations can be studies for example by investigating nuclear shapes via

Coulomb excitation experiments or by studying the strength of 0+ states excited in pair-

transfer reactions.

Occupancies of valence orbits

Experimental information on occupancies (or vacancies) of the valence orbits can establish

important constraints on the nuclear models used in the various approaches. In particular,

single or two nucleon transfer reactions can provide important spectroscopic information

in this regard. For example, on tuning the ISM [63] and QRPA [64, 65] calculations to

reproduce experimental data in the A = 76 nuclei have led to a significant change in 76Ge

0νββ decay NME both calculations. This reduced the discrepancy between the calculated

ISM and QRPA matrix elements.

In summary, improving the calculation of 0νββ decay matrix elements is a challenging

but necessary task. Experimental information from charge-exchange and particle transfer

reactions are vital and can be used to improve the quality of wavefunctions used to

calculate the transition matrix elements.
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1.6 Status of 136Xe→136Ba ββ decay experiments

In recent years, the search for neutrinoless double beta decay has accelerated as large

scale state-of-art experiments have become operational and several others are in an ad-

vanced stage of development or construction. Some of the experiments that are currently

collecting data are KamLAND-ZEN [66–68], EXO-200 [69, 70], CUORE [71], Majorana

Demonstrator [72], GERDA [73] and CUPID-0 [74]. The first two experiments study

the 0νββ decay of 136Xe, CUORE (and its predecessors [75]) study 130Te, the Majorana

Demonstrator and GERDA looks for the decay of 76Ge and 82Se is the isotope of interest

in CUPID-0. In addition to these, the NEMO-3 detector [76,77] that operated from 2003-

2011 simultaneously looked for the 0νββ of 7 isotopes, 48Ca, 82Se, 96Zr, 100Mo, 116Cd,

130Te and 150Nd. The NEMO-3 project is currently being upgraded to SuperNEMO [78].

While all the current ββ decay experiments have their own set of advantages, as this

thesis work is motivated towards the 0νββ of 136Xe→136Ba, in this section we shall focus

our discussion to only this particular case, which offers certain advantages that makes it

an attractive candidate for double beta decay experiments. In fact, the most stringent

limit on the mass of light Majorana neutrinos is currently set by the KamLAND-ZEN

experiment [66] that uses enriched liquid xenon. Some of the advantages that this isotope

offers are listed below.

1. 136Xe relatively abundant (8.9%), affordable and easy to purify and enrich.

2. There are no long-lived xenon isotopes thus eliminating any internal contamination.

3. Xenon can be used as a gaseous detector or in the form of a liquid scintillator. High

density of liquid xenon acts as a shield against external gamma backgrounds. It

also allows to reconstruct the event topologies.

4. One can achieve an improved energy resolution through the collection of both ion-

ization electrons as well as scintillation light from the xenon.

5. The liquid xenon potentially allows for complete background rejection through tag-

ging of the daughter barium ion in this method. This is unique amongst all the
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0νββ decay experiments.

6. The detectors can be made compact by using condensed liquid xenon. This will

reduce the need for underground space as well as the shielding material.

7. The measured 2νββ decay half-life [79,80] yields the smallest 2νββ matrix element

amongst all cases, with |M2ν | = 0.019 MeV−1. This leads to maximal supression of

the standard model background.

8. The parent nucleus (82 neutrons, 54 protons) is singly closed shell and mostly spher-

ical, which should make matrix element calculations relatively simpler.

In light of the above, searches for 0νββ decays of 136Xe has been the focus of state-of-

art experiments such as KamLAND-ZEN [66] and EXO [69]. Some results from these

experiments are summarized below.

EXO-200

EXO-200 is a liquid xenon time projection chamber that uses ∼ 81% enriched 136Xe

simultaneously as source and detector [70]. This 200 kg detector is installed at the Waste

Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. The experiment was designed

to attain sensitivity to Majorana neutrino masses of ∼ 100 meV. Additionally, it was

meant to serve as a prototype for designing a ton-scale detector that would be sensitive to

Majorana neutrino masses of ∼ 10 meV. Phase I of EXO-200 consisted of 150 kg enriched

LXe and it was the first to observe the 2νββ decay of 136Xe [79]. Data collected during

this phase was equivalent to 100 kg.yr exposure establishing a limit on the 0νββ half life

of 136Xe to be < 1.1×1025 yr at 90% CL corresponding to a limit on the neutrino mass of

0.2-0.4 eV [69,81]. As part of Phase II, EXO-200 has improved its resolution and aims to

run for 3 years to attain a sensitivity of T 0ν
1/2 > 5.7×1026 yr at 90% C.L. or the equivalent

of 〈mββ〉 < 0.09 eV. Extensive R&D is being conducted currently to implement barium

tagging in nEXO [82,83], which is the upgrade to EXO-200.
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Figure 1.5: Cutaway view of the EXO-200 setup [70]

KamLAND-ZEN

KamLAND-ZEN [66] is an upgrade of the Kamioka Liquid Scintillator Antineutrino Detec-

tor (KamLAND) [84] that was originally designed to study the reactor antineutrino flux.

KamLAND-ZEN, world’s largest liquid scintillator detector is located in the Kamioka

mine in Japan. As shown in Fig. 1.6, enriched xenon (∼ 91% 136Xe) dissolved in a liq-

uid scintillator (composed of 1000 metric tons of mineral oil, benzene, and fluorescent

chemicals) is filled inside a 3.08 m balloon placed at the center of the original KamLAND

detector [67]. The inner balloon is surrounded by 1000 ton ultra pure liquid scintilla-

tor that acts as a shield. KamLAND-ZEN recently completed Phase II of data taking

corresponding to an exposure of 504 kg.yr of 136Xe. They report a limit on the half

life 136Xe 0νββ decay of T 0νββ
1/2 (136Xe) > 1.07 × 1026 yr at 90% CL that translates to

mββ < (61− 165) meV for light Majorana neutrinos [66]. To date, this is the most strin-

gent limit on light Majorana neutrino masses. KamLAND-ZEN is now in the process of

upgrading to 800 kg of enriched Xe. This will increase the sensitivity of the experiment

to the region 〈mββ〉 < 50 meV. KamLAND-ZEN would thus be the first 0νββ experiment

that probes the inverted mass hierarchy region [66,67] as shown in Fig. 1.7.
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Figure 1.6: Schematic representation of the KamLAND-ZEN detector. At the center of the
detector is the 3.08 m balloon filled with enriched 136Xe [68].

1.6.1 Information on 136Cs intermediate states

As shown in Fig. 1.2, the intermediate nucleus in the ββ decay of 136Xe→136Ba is the

odd-odd 136Cs nucleus. Until 2002, the only excited state known in 136Cs was the 8−

isomeric state [85]. It was only in 2011, that the 136Xe(3He, t) charge exchange reaction

was used to produce a large number of 1+ states in 136Cs [48, 86] and further obtain the

integrated B(GT ) value from the reaction. This measurement was done using the Grand

Raiden Spectrometer at the Research Center for Nuclear Physics (RCNP) in Japan. The

tritons were measured close to 0◦ and a multipole decomposition method was used to

identify the 1+ states in 136Cs. The spectrum from this experiment (shown in Fig. 1.8)

was limited by an energy resolution of ∼40 keV. Moreover, the charge exchange reaction

is highly selective producing mostly 1+ states. Nevertheless, this experiment provided

the only available information of the energy spectrum in 136Cs until a recent experiment

studied other higher spin states [86, 87].
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Figure 1.7: 〈mββ〉 as a function of the lightest neutrino mass. The shaded regions for the normal
hierarchy (NH) and the inverted hierarchy (IH) are the current limits set by neutrino oscillation
experiments. The horizontal blue band is the current 90% C.L. limits on 〈mββ〉 set by the
KamLAND-Zen experiment [66]. Currently, KamLAND-ZEN provides the most stringent limit
on the masses of light Majorana neutrinos.

Figure 1.8: Triton spectrum from the 136Xe(3He, t)136Cs reaction, observed with the the Grand
Raiden Spectrometer at RCNP. Figure extracted from Ref. [48].
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Recent pnQRPA calculations have suggested that the 1−, 2±, 3+, 4+ states in 136Cs could

contribute significantly to the ground state to ground state transition and 0+, 1+, 2± to

the ground state to first excited state transition [88].

In light of the above, a high resolution measurement of states in 136Cs is a timely require-

ment.
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2 Direct Nuclear Reactions as a Probe of

Nuclear Structure

I am now convinced that theoretical physics is actually philosophy

Max Born

Since this work aims to study the structure of 136Ba and 136Cs nuclei using the 138Ba(p, t)

and 138Ba(d, α) two-nucleon transfer reactions, I begin this chapter with a brief descrip-

tion of general scattering theory. This is followed by an explanation of the distorted wave

method used in the analysis of nuclear reaction.s The chapter concludes with a discussion

on the use of direct two-nucleon transfer reactions to study nuclear structure, particularly

in the context of pairing correlations.

In a standard nuclear reaction, a beam of accelerated particles (a) strikes the target

(A) at rest resulting in a number of different possible nuclei. This can be denoted as,

a + A → b + B. (2.1)

Depending on the energy in the center of mass frame and impact parameter of the incident

particle, different types of nuclear reactions can occur. Simplest of these is the elastic

scattering of the projectile a by the target A with no change in the internal configuration of

the target and projectile (b = a and B = A). A slight variation of elastic scattering process

is the inelastic scattering, where the projectile or target is excited (b = a∗ or B = A∗).

A nuclear reaction occurs when A 6= B. When the projectile makes glancing collisions

with the target nuclei, energy is exchanged between few nucleons of the interacting nuclei.
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In such direct reactions, the initial and final states of the nuclei are very similar and the

reaction usually occurs on a very short time-scale (approximately the time required for

the projectile to pass through the target nucleus). A compound nuclear reaction on the

other hand occurs at relatively longer time scale. In this case, the projectile interacts with

a larger number of nucleons within the target nucleus resulting in the energy being shared

between many nucleons. The reaction products are independent of the initial states and

depend only on the energy of the compound nucleus formed in the process.

2.1 General non-relativistic scattering theory

For a general nuclear reaction the wavefunction Ψinitial describing the initial state of the

system [89] is given by

Ψinitial = A0e
i(~kα.~rα)ψaψA , (2.2)

where ψa and ψA are the wavefunctions of the projectile and target, rα is relative separa-

tion between the centers of mass of a and A, kα is the wave number and A0 is the amplitude

of the incident wave, which is related to the flux of the beam. At large distances from

the target (kr � 1), the final state wavefunction contains the summed scattered waves

for each reaction channel β, as well as the incident wave

Ψfinal
kr�1
= A0

[
ei(

~kα.~rα)ψaψA +
∑
β

ei(
~kβ .~rβ)

rβ
fβ(θ, φ)ψbψB

]
. (2.3)

In the above, the scattered wave in each channel is a spherical wave [89]. Fig. 2.1 shows

a schematic representation of this situation. Of particular interest in a nuclear reaction

is the differential scattering cross section dσ
dΩ

, measured by a detector subtending a small

solid angle ∆Ω as shown in the figure. It is defined as

(
dσ

dΩ

)
β

=
|~jβ|
|~jα|

=
vβ
vα
|fβ(θ, φ)|2 , (2.4)
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Figure 2.1: Quantum mechanical description of scattering. An incident plane wave results in a
spherical scattered wave due to the scattering potential. For a detector placed at an angle θ with
respect to the direction of the incident particles, kout = kβ is the momentum of the scattered
wave in the reaction channel β while kin = kα is the incident momentum of Ψinitial. Picture
taken from Ref. [90].

where vβ is the relative velocity of the scattered particles from the residual nucleus and

vα is the velocity of the incident beam.

In the calculation of scattering cross sections from a spherically symmetric potential V (r),

the central force Hamiltonian commutes with the orbital angular momentum of the reac-

tion, L2 and Lz. In such a scenario L2, Lz and H must have a set of common eigenstates

whose radial and angular parts can be separated as

Ψ(r, θ) =
∞∑
`=0

∑̀
m=−`

C`mR`m(kr)P`(cos θ). (2.5)

These wavefunctions must satisfy the boundary conditions that V (r)→ 0 as r →∞ and

Ψ→ 0 as r → 0. This reduces the radial part of the Schrödinger equation to a spherical

Bessel differential equation whose solutions are of the form [90]

R`m(k, r)→ j`(kr)
r→∞−−−→ sin(kr − `π/2)

kr
, (2.6)

33



for a fixed k, with different ` values. Additionally, the azimuthal symmetry eliminates

all m 6= 0 combinations in Eq. (2.5). Due to this decomposition of the incoming plane

waves (with fixed momentum ~k) into a set of infinite partial waves with different values

of orbital angular momentum `, the scattering amplitude f(θ) takes the form [90]

f(θ) ∼ 1

k

∞∑
l=0

(2`+ 1) sin δ` eiδ`P`(cos θ). (2.7)

The quantity δ` is the phase shift of the scattered wave due its passage through a region

of potential V (r). Even though ` can take values up to infinity, depending on the energy

of the incident beam and the range of the scattering potential only a few partial waves

contribute significantly towards the cross sections [91].

It must be noted that Eq. (2.7) is the scattering amplitude for the special case of elastic

scattering. For a general scattering process, the amplitude takes the form [89]

f(θ, φ)β =
1

2ikα

(
vα
vβ

)1/2 ∞∑
l=0

(2`+ 1) [η`,β − δα,β]P`(cos θ), (2.8)

where δα,β = 0 for non-elastic processes and η`,β are set of amplitudes that form the

scattering S matrix S`β,α. For complex nuclear systems the Hamiltonian that solves the

Schrödinger equation for the scattering process can be separated into different parts that

describe the internal degrees of freedom and the relative motion of the nuclei, so that

Htot = Ha +HA −
~2

2µα
O2
α + Vα . (2.9)

Here, Vα is the interaction potential between the two nuclei a and A leading to the final

states in a particular exit channel. The internal wavefunctions ψa, ψA are solutions to

their corresponding Schrödinger equations

Haψa = Eaψa

HAψA = EAψA.
(2.10)
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The exact solutions to the full Schrödinger equation

HtotΨtot = EtotΨtot (2.11)

need complete information about the internal structure of the nuclei, for which one has

to solve the many-body Schrödinger equation. This is a nearly impossible task even with

modern computing systems. However, approximation methods work really well in describ-

ing the the nuclear wave functions accurately. Furthermore, if the interaction potential

Vα is weak, the amplitude of the scattered waves in Eq. (2.3) are small.

To better understand the power of approximation methods we revert back to the Schrödinger

equations for the scattering of a single particle by a general potential. It is written as

− ~
2m

O2χ(~r) + λV (~r)χ(~r) = Eχ(~r) , (2.12)

which produces a continuous spectra of states. In the above equation, λ is a parameter

that gives a measure of the strength of the potential V (~r), so that for λ → 0 only free

particle solutions exist. Eq. (2.12) reduces to the Helmholtz equation

(
O2 + k2

)
χ(~r) = λ U(~r) χ(~r) (2.13)

where

U(~r) =
2m

~2
V (~r) . (2.14)

This equation can be solved using the familiar Green’s function techniques and other

approximations even if the exact form of U(~r) is not known. The solution for outgoing

waves is an integral equation for χ(~r)

χ(~r) = ei
~k.~r + λ

∫
d3r′ G(~r,~r ′) U(~r ′) χ(~r ′), (2.15)
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such that the boundary condition in Eq. (2.3) is still valid, i.e. as r →∞

χ(~r) = ei
~k.~r + f(θ, φ)

eikr

r
. (2.16)

At large r Eq. (2.15) reduces to

χ(~r) ≈ ei
~k.~r − λ

4π

eikr

r

∫
d3r′e−i

~k ′.~r ′ U(~r ′) χ(~r ′), (2.17)

which in comparison to Eq. (2.16) results in [89]

f(θ, φ) = − λ

4π

∫
d3r′e−i

~k ′.~r ′ U(~r ′) χ(~r ′), (2.18)

where ~~k is the momentum of the scattered particle in the direction of a detector placed

at (θ, φ). The above equation can be solved iteratively by a series expansion in terms of

λ (assuming that λ is small). This series is called the Born Series, whose leading order

correction is the first Born Approximation. The scattering amplitude in the first Born

approximation is obtained by assuming χ(~r ′) = ei
~k .~r ′ , such that

fBA(θ, φ) = − λ

4π

∫
d3r′e−i

~k ′.~r ′U(~r′)ei
~k.~r ′ (2.19)

The next terms in the series, arise from the second part of

χ(~r ′) = ei
~k.~r ′ +

[
− λ

4π

∫
d3r′′e−i

~k ′.~r ′′ U(~r ′′) χ(~r ′′)

]
... (2.20)

shown in the parenthesis and so on, which converges for sufficiently small λ.

A more sophisticated version of the plane wave Born approximation is the distorted wave

Born approximation (DWBA), which takes into account the distortion of the plane wave

due to the potential. This is usually when the scattering field is large and cannot be used

as a perturbation anymore. In such a case, it is possible to solve the scattering problem

in a neighboring potential, which has the required weak effect on the scattering process.
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Thus, the potential U can be written as the sum of two parts [89],

U = U1 + U2 (2.21)

with U2 being the small perturbation to the much stronger potential U1. Then in the

DWBA, the scattering state solutions can be determined by the Born approximation

χ(~r) = χ1(~r)− λ

4π

eikr

r

∫
d3r′ e−i

~k ′.~r ′ U2(~r ′) χ1(~r ′) (2.22)

to describe the scattering of the incident ‘distorted’ wave χ1(~r). The latter is the outgoing

solution of the Helmholtz equation for U1

[O2 + k2 − U1(~r)] χ1(~r) = 0 . (2.23)

The total scattering amplitude for the two potentials U1 and U2 is [89]

fDWBA(θ, φ) = − λ

4π

∫
d3r′ e−i

~k ′.~r ′ U1(~r ′) χ1(~r ′)

− λ

4π

∫
d3r′ χ−1 (~r ′)∗U2(~r ′)χ(~r ′)

(2.24)

where we assume χ(~r) ≈ χ1(~r) for a small perturbation. In the above equation, the

wavefunction χ−1 (~r ′)∗ represents an incoming scattered wave. This should be apparent

from observing the first term in the amplitude, where e−i
~k ′.~r ′ represents an incoming plane

wave.

Optical Model Potential

The distorting potential widely used in the DWBA analysis for single step direct reactions

is the optical model potential. The underlying principle of the optical model is that when

a light projectile is incident on a target nucleus the dominant mode of interaction is

elastic scattering. Any inelastic scattering or nuclear reaction is treated as a perturbation

to elastic scattering [89, 92]. For a given reaction channel α, the interaction potential is
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written as

U(r) = V (r) + iW (r) , (2.25)

with, a real part (V ) for the elastic scattering amplitude and an imaginary part (W ),

which is the perturbation accounting for the non-elastic channels. The optical model

potential is further divided into volume, surface, spin-orbit and Coulomb potential

U(r) = Uvolume(r) + Usurface(r) + Uspin−orbit(r) + UCoulomb(r) . (2.26)

The first term in the optical model potential, Uvolume(r) is the volume Wood-Saxon (WS)

term, that describes the interaction between the projectile and the nuclear-core of the

target nucleus. The volume potential dominates when the energy of the projectile is large

enough that it can probe through the target nucleus. It is defined by VR and WV , the real

and imaginary well-depths respectively, RR = rRA
1/3 and RV = rVA

1/3, the geometrical

radius defined in terms of A the target mass and aR, aV the diffuseness parameters

Uvolume(r) = −VR f(r, RR, aR)− iWv f(r, RV , aV ) , (2.27)

where

f(r, Ri, ai) =
1

1 + e(r−Ri)/ai
, i = R, V (2.28)

To account for the absorption due to the valence nucleons, the surface potential is defined

in terms of a derivative Wood-Saxon. This potential peaks at the surface and is important

at lower energies when the projectile does not probe much of the nuclear interior. This

potential is generally defined by only the imaginary term

Usurface(r) = i4asWs
d

dr
f(r, Rs, as). (2.29)

In the above, Rs = rsA
1/3, as are the radii and diffuseness parameters of the potential

and f(r, Rs, as) has the same form as Eq. (2.28) except that i = s.

The spin-orbit interaction, Uspin−orbit(r) is weaker compared to the volume and surface

potential but becomes significant when polarization studies are performed. This potential
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is also surface peaked since the nuclear core is assumed to be coupled to spin 0. Thus

only the valence nucleons interact via the spin-orbit potential.

Uspin−orbit(r) = (Vso + iWso)

(
~
mπc

)2
1

r

d

dr
f(r, Rso, aso)(2~L.~s) . (2.30)

The factor (~/mπc)
2 ≈ 2.0 is the square of the reduced Compton wavelength of the pion.

As in the previous two cases, Rso = rsoA
1/3 is the radius and aso is the diffuseness of

the spin-orbit potential. Additionally, for charged particles the optical model potential

also includes the Coulomb term that can be approximated as the potential of a uniformly

charged sphere with radius Rc = rcA
1/3,

UCoulomb(r) = VC(r) =


Z1Z2e2

2Rc

[
3−

(
r
Rc

)2
]

r ≤ Rc

Z1Z2e2

r
r > Rc

(2.31)

where Z1, Z2 are the atomic numbers of the projectile and target and e is the elementary

charge. Combining Eqs. (2.27), (2.29), (2.30) and (2.31) the optical model potential is

written as

U(r) =− VR f(r, RR, aR)− iWv f(r, RV , aV ) + i4asWs
d

dr
f(r, Rs, as)

+ (Vso + iWso)

(
~
mπc

)2
1

r

d

dr
f(r, Rso, aso)(2~L.~s) + VC(r) .

(2.32)

In the above equations the well-depths (Vi, Wi) are specified in MeV and the radii (Ri)

and diffuseness (ai) parameters are defined in femtometers (fm). To obtain the parameters

of the potential (Vi, Wi, ri, ai where i = R, V, s, so and C) the phenomenological form

in Eq. (2.32) is fit to experimental elastic scattering data for a large number of different

targets and incident projectile energies. The result is a ‘global’ set of optical model

potential parameters that are applicable for a wide range of nuclei and beam energies.
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2.2 Two Nucleon Transfer Reactions

Information about the reaction mechanism and nuclear structure is embedded in the

transition matrix element Tβα which in the DWBA formalism can be written as [93,94]

Tβα =

∫
d3rβ

∫
d3rαχ

(−)∗(~k β,~r β)〈ψbψB|V |ψaψA〉χ(+)(~k α,~r α) . (2.33)

In the above equation, α and β represent the incoming and outgoing channels, rα and

rβ are the relative coordinates, χ(+), χ(−) are the incoming and outgoing distorted waves

(described by the notations χ−1 , χ1 in Sect. 2.1) generated by the optical potential. In

the asymptotic limit these distorted waves reduce to Eq. (2.16). When the initial or final

projectiles have spin, the distorted waves become matrices in spin space

χ(±)(~k ,~r )ηs,m =
∑
m′

χ
(±)
m,m′(

~k ,~r )ηs,m′ , (2.34)

where ηs,m are spin functions and the partial wave expansion for χ
(±)
m,m′(

~k ,~r ) is

χ
(±)
m,m′(

~k ,~r ) =

√
4π

kr

∑
J,L

iL
√

2L+ 1χJLs(k, r)(LsMm|JM ′)

(LsM ′ −m′m′|JM ′)Y M ′−m
L (~r )dL0,M ′−m′(

~k ) .

(2.35)

In the above equation, dL0,M ′−m′ are rotation functions for integer spin [93, 95] and the

symbol (....|..) represent the Clebsch-Gordan coefficients. The radial part of the distorted

waves satisfy the Schrödinger equation

(
d2

dr2
+ k2 − L(L+ 1)

r2
− 2µ

~2
U(r)

)
χJLs(k, r) = 0 , (2.36)

where U(r) is the optical potential described in the previous section. The quantity

〈ψbψB|V |ψaψA〉 in Eq. (2.33) contains the nuclear structure information and can be writ-
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ten as [93,96]

〈ψbψB|V |ψaψA〉 ≡ 〈JBMBsbmb|V |JAMAsama〉

=
∑
lsj

i−lBlsj(JAjMAMB −MA|JBMB)(sasmbma −mb|sama)

× (lsmma −mb|jMA −MB)flsj(r)δ

(
rb −

A

B
ra

)
Y m
l (~r )∗ ,

(2.37)

In Eq. (2.37), Blsj is a measure of the interaction strength and flsj contains details of

the reaction model. For the case of two-nucleon pick-up reaction (e.g (d, α), (p, t)) for

unpolarized projectile and target, the differential cross section in terms of the Tβα is [97]

(
dσ

dΩ

)
=

µαµβ
(2π}2)2

kβ
kα

1

(2JA + 1)(2sa + 1)

∑
MAMBmamb

|Tβα|2, (2.38)

where µα, µβ are the reduced masses in the incoming and outgoing channel. Combining

Eq. (2.33), (2.37) and (2.38) and following the procedure outlined in Ref. [91] and [94],

the cross section can be expressed as

(
dσ

dΩ

)
∝
∑
LSJT

C2
ST

∑
M

∣∣∣∣∣∑
N

GNLSJTB
M
NL

∣∣∣∣∣
2

, (2.39)

where

CST = (TaTzaTTZ |TbTzb)bST , (2.40)

is specific to the reaction type. The L, S, J and T quantum numbers represent the or-

bital, spin, total angular momentum and the isospin of the transferred pair. The bST

factor gives the weight by which the spin-singlet (S = 0) and spin-triplet (S = 1) states

of the transferred nucleon pair contribute towards the transfer cross section [94].

As evident in Eq. (2.39), the two-nucleon transfer cross sections cannot be factorized inde-

pendently into a nuclear structure part (GNLSJT ) and a reaction kinematics part (BM
NL),

which is otherwise possible for a single-nucleon transfer reaction. This happens because

different two-nucleon configurations (characterized by the principal quantum number N

and weighted by the structure factor GNLSJT ) contribute coherently to the transfer cross
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section. This makes the cross sections sensitive to pair correlations in the nuclear wave-

functions and are therefore used to study the pairing properties of nuclei, something that

cannot be achieved using single-nucleon transfer reactions.

In Eq. (2.39), BM
NL contains information on all aspects of the reaction, i.e. mechanism

and kinematics. Since no nuclear structure information is embedded in BM
NL, it represents

the probability of transferring a structureless nucleon pair between the target and projec-

tile [91]. The second term GNLSJT is called the structure amplitude and is analogous to

the spectroscopic factor of a single-nucleon transfer reaction. It contains all the nuclear

structure information of the transferred particle as well as the initial and final nuclei with

mass numbers A and A+2. GNLSJT can further be expressed as a product of three overlap

integrals [91],

GNLSJT = g
∑
γ

βγLSJT 〈nλ,NΛ;L|n1l1, n2l2;L〉 Ωn, (2.41)

where γ ≡ (n1, l1, j1;n2, l2, j2) represents the internal quantum numbers for the individual

nucleons and the factor g depends on the symmetry of the nuclear wavefunction

g = 1, if n1l1j1 = n2l2j2

=
√

2, otherwise .
(2.42)

The first overlap integral βγLSJT in Eq. (2.41) is called the parentage factor. For the (d, α)

or (p, t) pick up reactions, it describes the degree to which the ground state of the (A+ 2)

nucleus (138Ba in this case) can be described as the state in the 136Cs (136Ba) formed in

the reaction plus a deuteron (neutron pair). More precisely [91]

βγLSJT (JAJB) ∝
∫ [

ψ∗JA,TA(A′)× φ∗γLSJT (r1, r2)
]
JBTB

ψJBTB(A′, r1, r2)dA′dr1dr2 , (2.43)

where A′ denotes the number of nucleons in the target, ψJA,TA , ψJB ,TB are the wavefunc-

tions of the target and residual nuclei, φγLSJT (r1, r2) characterizes the wavefunction of

the transferred pair and the square bracket denotes vector coupling. β can be calculated

exactly if the wavefunctions ψA, ψB for the target and residual nucleus are known.

The 〈nλ,NΛ;L|n1l1, n2l2;L〉 term, is the overlap between the spatial parts of the wave-
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function of the two nucleon treated individually (with quantum numbers n1l1, n2l2) with

wavefunction of the two nucleons treated as a cluster. The quantities λ,Λ are the orbital

angular momenta of the relative and center-of-mass motions of the cluster and n, N their

principal quantum numbers. A general assumption of two-nucleon transfer reactions is

that the nucleon pair within the cluster has no relative angular momentum, i.e. λ = 0 and

the pair is said to be in a relative ‘s-state’ motion [91]. Therefore, in a direct, single-step

two-nucleon transfer reaction Λ = L and the differential cross sections are sensitive to the

transferred orbital angular momentum L [94].

The final Ωn term is the overlap between the relative motion of the two nucleons in the

cluster φnλ with the relative motion of the pair in the ejectile (alpha or triton) that picks up

the two nucleons. Consequently, the only configurations that will contribute significantly

towards two-nucleon transfer cross sections are the ones that are similarly correlated as

the transferred pair. Thus two-nucleon transfer reactions can provide a critical test of

nuclear structure wavefunctions.

2.2.1 Two nucleon transfer reaction as a probe to study nuclear

structure

Two-nucleon transfer reactions are classified into two distinct categories based on whether

the transferred nucleons are identical or not. When identical, the two nucleons couple to

total spin S = 0 and isospin T = 1. For example, (p, t) reactions that transfer a pair of

neutrons between the projectile and target belong to this category. In the second kind,

the neutron-proton pair can couple to either S = 0, T = 1 or S = 1, T = 0. As the

deuteron is found predominantly in the S = 1 (spin-triplet) state, in the (d, α) reaction

the transferred ‘deuteron’ pair couples to S = 1, T = 0. The (p, t) and (d, α) reactions

have different qualitative properties which allows to study different aspects of the nuclear

structure. Thus the two reactions are discussed below.
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2.2.2 The (d, α) reaction

Spectroscopic information on odd-odd nuclei such as 136Cs are quite scarce due to the

experimental challenges posed by the need of suitable targets to excite these nuclei using

single-nucleon transfer reactions and the large density of states in such odd-odd nuclei.

Direct, single-step (d, α) reactions excite proton-neutron hole (π−1ν−1) states and are

particularly useful on closed shell nuclei. As mentioned above, the (d, α) reaction can be

modeled as a deuteron transfer between the target and projectile in a relative ` = 0, S = 1

and T = 0 state. Thus the final states populated in 138Ba(d, α)136Cs would follow the

selection rule

|Ji − J | ≤ Jf ≤ |Ji + J | , (2.44)

where J = L + S is the total angular momentum transferred by the deuteron and Ji is

the total angular momentum of the target. The above selection rules for a Jπ = 0+ target

further reduces to,

|L− 1| ≤ Jf ≤ |L+ 1| . (2.45)

Owing to the additional rule of parity conservation

(πi)(πf ) = (−1)L , (2.46)

the natural parity states are populated via

Jf = L (2.47)

and unnatural parity states can be populated by two different orbital angular momenta

transfers

Jf = L± 1 . (2.48)

In addition to the above selection rules the (d, α) reaction requires that J + S = even if

the neutron and proton are transferred from (or to) the same state [91]. Thus the (d, α)

cross section to these states would provide a measure of the configuration mixing in the
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initial and final wavefunctions.

2.2.3 The (p, t) reaction

This two-neutron transfer reaction is ideal for measuring the spin-singlet (S = 0) corre-

lations in the nuclear wavefunctions. Direct (p, t) reactions are ideally suited to study

nuclear states with excited 2-neutron hole configurations. As in the case of the (d, α)

reaction, the (p, t) reaction too follows the |Ji − J | ≤ Jf ≤ |Ji + J | selection rule. For a

0+ target, coupled with the S = 0 criterion, the states populated in this reaction follow

the simplified selection rules,

Jf = L

(πi)(πf ) = (−1)L
(2.49)

thereby restricting the direct single-step mechanism to populating only natural parity

states. Of all the states populated in the (p, t) reaction, the L = 0 transfer is a very

specific probe of nuclear collectivity. As evident from Eq. (2.49), the L = 0 transfer

populates the Jπ = 0+ states in the residual nucleus. In even-even nuclei, these states are

the result of coupling two identical nucleons to spin J = 0 and isospin T = 1. These 0+

states contain a large number of two-particle configurations brought about by the pairing

interaction. This effect is pronounced in spherical and deformed nuclei far from the shell

closures and manifests in (p, t) reactions as a strong L = 0 transition to the ground state,

while populating the excited 0+ states much more weakly [98,99].

In some situations the (p, t) reaction populates excited 0+ states with a significant strength

compared to the L = 0 transfer to the ground state. This splitting of strength occurs

typically in nuclei in the vicinity of the closed shells where the pairing interactions is

weaker than the shell gap as a result of which, the orbitals above and below the shell gap

mix separately resulting in two different correlated 0+ states. A large strength to excited

0+ states would also be observed in cases where there is a sudden change in deformation

between the target and residual nuclei. In this situation the strong population of the

excited 0+ state results from the large overlap in the wavefunctions of the excited state
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in the residual nucleus with the ground state of the target nucleus. This for instance has

been observed in (p, t) and (t, p) reactions on samarium isotopes, where a change from

spherical to deformed shape occurs around the neutron number N = 88 [98,100,101]. A

systematic study of the L = 0 transitions in two-neutron transfer reactions on neighboring

isotopes can shed light on the nature of excited 0+ states [99].

2.3 Pairing interactions and two-neutron transfer re-

actions

Strong signatures of nuclear pairing are evident along the nuclear landscape, for instance,

in the odd-even staggering of nuclear binding energies and single nucleon separation en-

ergies or in the relatively high excitation energy of the first excited state in even-even

nuclei compared to the neighboring odd-odd and odd-even nuclei. Theoretical under-

standing of the pairing interactions were initiated in the early 1960’s by the work of Bohr,

Mottelson and Pines [102] following the BCS theory of superconductivity in metals [103].

Similar to the mechanism that generates the Cooper pairs in superconductors, the short-

ranged, strong and attractive nuclear pairing interaction couples the valence nucleons in

time-reversed orbits to integral spins S = 0, 1 depending on the isospin (T = 1, 0) of the

coupled pair. As the nuclear force does not distinguish between the neutrons and protons,

the isospin symmetry of the pairing Hamiltonian leads to two kinds of pairing interactions,

the isoscalar and isovector interaction. The isovector interaction couples the nucleons into

states with S = 0, T = 1 and isospin projections Tz = 1, 0,−1 corresponding to a neutron-

neutron, neutron-proton and proton-proton pair, while the isoscalar interaction leads to

a S = 1, T = 0 proton-neutron pair. Pairing correlations in nuclei manifest largely via

the isovector interaction, as the isoscalar proton-neutron interaction is plagued by the

requirement that both the valence neutron and proton should be in the same shell-model

orbits [104,105].

Even though the pairing energy is small compared to the binding energy of the nucleus,

the pairing interaction contributes significantly towards nuclear collectivity. In nuclei far
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from closed shells, the pairing interaction mixes the single particle orbits, resulting in

the ground state of an even-even nucleus being a BCS (superfluid) condensate of a large

number of nucleon pairs coupled to Jπ = 0+. A remarkable feature of this pairing mode

is observed with systematic studies along an isotopic (isotonic) chain, revealing a nearly

constant energy difference between the ground state and the first 2+ state [106,107]. De-

formed nuclei with open proton or neutron shells are also known to exhibit properties of

pairing condensates [106]. In nuclei around closed shells, the energy gap between single

particle states at shell closures is much larger than the pairing energy. This causes the

single particle states above and below the shell gap to mix separately and thus form dif-

ferent correlated 0+ states above and below the shell gaps.

These BCS correlated states can be probed by two-particle transfer reactions where the

spatial correlation of the transferred pair matches that of the nucleus being probed. For

instance the (p, t) and (t, p) reactions that transfer two neutrons between the projectile

and target, can probe the Tz = 1 component of the isovector pairing interaction and the

(3He, n) reaction as it transfers a proton pair will be sensitive to the Tz = −1 compo-

nent. The (3He, p), (p,3 He) reactions on the other hand, can transfer the n− p pair in a

S = 0, T = 1 or S = 1, T = 0 state and is sensitive to the Tz = 0 component of both, the

isovector and isoscalar interaction. BCS correlations in these reactions are identified by a

strong L = 0 transition to the ground state, with the excited 0+ states being populated

rather weakly. The enhanced cross-section to the ground 0+ state in two-particle transfer

reactions is a direct manifestation of the pairing correlations in this state. The reaction

mechanism favors not only the direct transfer of a single spatially correlated pair but also

the successive addition or removal of two single uncorrelated nucleons [106]. Thus in the

case that the ground state had strong correlations the dominant contribution would be

from the single-step mechanism. Conversely, if the nucleons were not correlated, the se-

quential two-step mechanism would dominate. Classic examples of nuclei exhibiting this

superfluidity are the Sn isotopes.
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2.4 Implication of pairing correlations on neutrino-

less double beta decay matrix elements

Assumptions in the pairing structure of the initial and final nuclei play a significant role

in the magnitude of calculated neutrinoless double beta decay matrix elements. These

calculations involve a sum of pair creation (P̂ †Jπ) and annihilation operators (P̂Jπ) that

converts a neutron pair coupled to Jπ in the parent nucleus into a proton pair in the final

nucleus [32,98]

M0ν ∼
∑
Jπ

P̂ †Jπ P̂Jπ . (2.50)

The overlap of the resulting state obtained from this operator and the ground state of

the final 0νββ nucleus gives the magnitude of Jπ contribution to the NME [108]. Thus

precise information about the pairing correlations and ground state properties of these

ββ-decay nuclei are crucial for testing the matrix element calculations.

Furthermore, the dominant contribution to the Gamow-Teller part of the NME in both

the QRPA and ISM calculations result from the nucleon pairs coupled to J = 0, while

the contributions from the J > 0 pairs is either negligible or have an opposite sign which

will result in a reduction of the NME [32, 109]. Thus, if the decay occurs between two

superfluid states, the contribution from the Jπ = 0+ states will dominate, resulting in a

relatively larger value of M0ν for the decay. However, in reality, there are no ββ pairs

where the parent as well as grand-daughter are superfluid nuclei and thus the contributions

arising from the decaying pair coupled to J > 0 needs to be considered as well. In the

remainder of this section I discuss the effect of the pairing interactions on the NME

in the generalized seniority regime. In the seniority structure, s defines the number

of unpaired nucleons in the nucleus. Thus for J = 0, where there are no unpaired

nucleons, s = 0. The existence of 2 unpaired nucleons (s = 2) can couple to form

states with angular momenta J = 2, 4, 6 etc [110]. When the NME calculations are

performed in a low seniority approximation (s ≤ 4), only partial correlations in the nuclear

wavefunctions are considered. This leads to an overestimation of the NME [32, 109] and
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can cause a significant error, especially when the initial and final states have different

deformation. For instance, it has been illustrated in Ref. [98] for a hypothetical case of

A = 66 mirror nuclei, that for a difference in deformation of ∼ 0.06 between the initial

and final nuclei, the NME reduces by a factor of ∼ 3. In highly deformed nuclei, the

ground state wavefunction is dominated by high seniority components which leads to a

seniority mismatch between the two nuclei and consequently a reduction in the matrix

element. Thus experimental study of pair correlations in the double beta nuclei can also

help in constraining the matrix element calculations, while simultaneously testing the

nuclear models used [63]. One of the most significant example in this respect has been

the (p, t) reactions on 76Ge and 76Se, where incorporating the results lead to a significant

change in the calculated NME for the decay [63–65]. A series of experiments were followed

to study the occupancies, vacancies and pairing properties of other ββ decay candidates,

particularly in the A =76, 100, 130 and 136 systems [111–119]. A short summary of the

current status on pairing correlations in some of most relevant 0νββ decay candidates is

discussed in the next section.

Status of pairing correlations in the ββ decay nuclei

As mentioned in Section 1.6, some of the most interesting neutrinoless double beta decay

pairs are 48Ca→48Ti, 76Ge→76Se, 82Se→82Kr, 100Mo→100Ru, 130Te→130Xe, 136Xe→136Ba

and 150Nd→150Sm. Pair transfer experiments performed on 76Ge and 76Se have shown

that both, neutron and proton pairing correlations are similar in the initial and final nu-

clei and thus validating the BCS approximation in this 0νββ decay pair [116,120]. In the

130Te−130Xe pair the (3He, n) proton-pair adding reaction on 122−130Te targets showed a

significant strength (∼ 20−40%) populating at least one excited 0+ state. This breakdown

is attributed to the shell closure at Z = 64 in these nuclei [121]. Further, a fragmentation

of the neutron pair transfer strength is observed in the 100Mo(p, t) as well as the 100Mo(t, p)

reactions [114, 122, 123], while ∼ 95% of the (p, t) transfer strength leading to and from

100Ru was observed in the ground state L = 0 transition [114]. There was no evidence

of a similar fragmentation in the proton pair transfer strength [124]. This should not be
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surprising since 100Mo lies in a region of gradual shape change, while the 100Ru nucleus is

nearly spherical. Extensive literature on (p, t) and (t, p) reactions on the neodymium and

samarium isotopes [125–128] show indications of breakdown in the BCS approximation

for 150Sm and 150Nd owing to the onset of deformation at N ∼ 90. Pair transfer reaction

in these nuclei have resulted in strong population of excited 0+ states, that are similarly

deformed as ground state of the target nucleus.

For one of the most promising ββ candidates, 136Xe →136 Ba, no neutron-pairing cor-

relations studies have been performed on either 136Xe or 136Ba [129] even though the

xenon and barium nuclei are known to lie within a typical transitional region of the nu-

clear landscape [130–133]. However, (p, t) reactions leading to the lighter barium isotopes

(128−134Ba) have observed strong population of at least one excited 0+ state [134–138].

The only previous 138Ba(p, t)136Ba measurement that was performed was at Ep = 52

MeV [131] and not particularly sensitive to the L = 0 transfers due to the higher incident

energy of the protons. In fact, the authors report strong excitations of the first 5− and

7− state in 136Ba and the only 0+ state reported in this work was the ground state. In

contrast, the 136Ba(t, p) reaction was performed at Et = 17 MeV [139]. This experiment

observed a strong excitation of the 3.61 MeV 0+ state in 138Ba. Additionally, a (3He, n)

reaction on a 136Xe and 138Ba targets observed considerable (∼ 10%) L = 0 strength to

excited 0+ states [140]. In light of the above, it is important to study the pairing proper-

ties of 136Ba and 136Xe. This thesis aims to address this issue by studying neutron pairing

correlations in 136Ba via the 138Ba(p, t) reaction.
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3 Experimental Setup

Science walks forward on two feet, theory and experiment, but

continuous progress is only made by the use of both.

Robert A Millikan

3.1 Overview of the Experiments

The data discussed in this thesis were obtained at the Maier-Leibnitz Laboratory (MLL) in

Garching, Germany. The first run was performed in October 2014 when several new states

in 136Cs were observed for the first time using the 138Ba(d, α) reaction. We performed the

second experiment in April 2016, to study pairing properties in 136Ba via the 138Ba(p, t)

reaction. This chapter briefly summarizes the experimental facility and apparatus used

to perform the measurements. An in-depth discussion on the data analysis follows in the

next chapter.

3.2 Experimental Facility

The Maier-Leibnitz Laboratory (MLL) is situated on the joint campuses of Ludwig -

Maximilllians Universität (LMU) and the Technische Universität München (TUM) in

Garching, Germany. At the heart of MLL is the 14 MV MP tandem Van de Graff

accelerator, shown in Fig. 3.1, that can produce both polarized and unpolarized accel-

erated beams. The ions for acceleration are provided by a conventional Stern-Gerlach

ion source [141]. The major components are the atomic beam source (ABS), an electron
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Figure 3.1: The tandem Van de Graff accelerator hall at MLL. The tandem is shown in orange
and the analyzing magnet is painted blue.

cyclotron resonance (ECR) chamber and a cesium vapor jet target. A vertical section

of the ion source is shown in Fig. 3.2. Molecular hydrogen or deuterium gas injected

into the ABS chamber is split into atomic hydrogen or deuterium by electron scattering

inside a cold plasma. An atomic jet is created by allowing the gas to expand adiabatically

into a vacuum chamber from an aluminum nozzle cooled to 80 K. From here the jet can

be directed into the sextupole magnet system comprising of four Stern-Gerlach FeNdB

permanent magnets for polarization or directly into the ECR unit for ionization. At this

stage the ABS can provide beam intensities of 6.4×1016 atoms/s for hydrogen and 5×1016

atoms/s for deuterium [141]. The ionization is achieved in a two-step charge-exchange

procedure. In the first step, the atomic beam of hydrogen or deuterium is singly ionized

within an ECR-plasma with a few percent efficiency resulting in H+ or D+ ions. The

positive beam is then transported to the cesium vapor jet target by two deceleration elec-

trodes. Here the H+ or D+ ions pick up two electrons with an efficiency > 30%, resulting

in negatively charged H− or D− ions which are then directed into the tandem accelerator.

A tandem accelerator is a two-stage Van de Graaff accelerator, which uses the same elec-

trostatic field twice to accelerate the charged particles. Negative ions (H−, D−) from the
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Figure 3.2: Schematic representation of the Stern-Gerlach ion source at the MLL. Adapted from
Ref [141].

ion source entering the tandem are accelerated from the ground potential to a positive

terminal voltage at center of the tank. At the center, these negatively charged parti-

cles encounter a carbon foil that strips off the electrons making them positively charged

(H+, D+). These positively charged ions are then repelled away from the central positive

potential thereby causing the second acceleration. The MLL tandem can (theoretically)

be set to a maximum terminal voltage of 14 MV, but for the purpose of our experiments,

the terminal voltages 11 and 11.5 MV were used to accelerate the deuterons and protons

to 22 and 23 MeV respectively.

The accelerated protons or deuterons are then sent to the Q3D experimental hall through

the 90◦ analyzing magnet (seen in blue in Fig. 3.1). The analyzing magnet selects and

maintains the energy of the beam within a precision of ∆E/E ≤ 10−4 with the help of

a feedback loop placed downstream of the magnet. The feedback loop consists of a pair

of slits that measures the beam current on either side. If the current on the left slit is

greater than on the right, it means that the energy of the particles is less than the desired

value. The terminal voltage on the tandem is then automatically increased to increase

the acceleration and vice versa.
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Figure 3.3: A schematic representation of the MP tandem accelerator used at MLL.

3.3 Q3D Magnetic Spectrometer

For our experiments, the reaction products were analyzed with a high-resolution magnetic

spectrometer called the Q3D (Fig. 3.4). The principle working criterion of a magnetic

spectrometer is the separation of the reaction products based on the differences in the

curvature of the trajectory of charged ejectiles based on their momenta. The Q3D spec-

trometer has one quadrupole and 3 dipole magnets [142]. The quadrupole magnet focuses

the reaction products onto the focal plane, while the three dipole magnets separate the

trajectories depending on their magnetic rigidity (momentum-to-charge ratio). The po-

sition of these particles on the focal plane therefore is a function of their kinetic energy

and as a consequence is directly related to the excitation energy of the residual nucleus.

The length of the focal plane detector limits the accessible range in excitation energies

per magnetic setting. For the Q3D this range is ∼ 8% of the maximum ejectile kinetic

energy. The fields set on the spectrometer can be varied to project different ranges of

excitation energies (momentum bite) on the focal plane. The magnetic fields are set using

a computer code that accounts for the radius of the Q3D, the momentum bite, the Q3D

angle for detecting the ejectiles, and the charge and masses of the four nuclei. The spec-

trometer can be rotated along a circular track that is controlled by an electric motor, to

perform angular distribution measurements. The angular range varies from 5◦ to ∼ 150◦
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Figure 3.4: Schematic of the Q3D spectrometer

with respect to the incident beam direction. Figure 3.4 shows a schematic of the Q3D

spectrometer.

3.4 Focal-Plane Detector

Ejectiles arriving at the focal plane [143,144] are first incident on 25 µm kapton window at

angle of 40◦−50◦, following which they pass through two proportional counters where they

deposit a part of their energy. These proportional counters are filled with ∼ 500 mbar of

isobutane gas. As the ejectiles transit through the two proportional counters, they ionize

the gas, creating an avalanche of free electrons. These electrons drift towards the anode

wires, where they generate a signal ∆E1 proportional to the energy loss. Simultaneously,

the positive ions are deposited on a cathode foil. Unlike the first proportional counter,

the second has two anode wires, ‘upper’ and ‘lower’ that record a summed ∆E signal.

Comparing the partial energy losses ∆E1 and ∆E between the two proportional counters

provides an effective method for identifying the ejectiles.

Another difference in the second proportional counter is that instead of the cathode foil

there is a strip foil, with 272 strips each separated by 0.5 mm spacing. These strips are
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Figure 3.5: Cartoon depicting the response the of the cathode-strip detector to a charged particle
interaction. Figure obtained from Ref. [145].

3 mm long and electrically isolated. Each strip is connected to separate pre-amplifiers and

shape amplifiers. This gives the position of the ejectiles along the focal plane. To consider

a random ionization as a valid event, a signal has to be registered on 3-7 consecutive strips.

Figure 3.5 shows the response of the cathode strips to an incoming charged particle.

Finally, on exiting the proportional counters, the ejectiles are incident on a 7-mm-thick

plastic scintillator that stops most of the light ions. This plastic scintillator is coupled

to four photomultiplier tubes (PMT) that collects and amplifies the scintillation light.

The resulting PMT signal is proportional to the total energy (E) of the particles. This

information (E) is used along with the energy losses (∆E1,∆E) to set additional particle

identification gates.

The signals from the upper and lower anode wires described earlier, are also recorded

individually to check for the vertical alignment of the proportional counters with the

plastic scintillator. The misalignment is easily detected by a surplus of events on one of

the anode wires compared to the other. In order to correct that, the entire detector can

be manually raised or lowered. A schematic view of the focal plane detector is shown in

Fig. 3.6.
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Figure 3.6: Cross sectional schematic view of the focal plane detector taken from Ref. [145]

3.5 Experimental details

3.5.1 138Ba(p, t)136Ba

States in 136Ba were produced using an ∼ 1.5 µA, 23 MeV proton beam which was incident

on a 40 µg/cm2 thick, 138BaCO3 target that was isotopically enriched to 99.9% 138Ba. The

triton focal plane spectra were collected at ten laboratory angles from 5◦ − 50◦ over four

sets of excitation energy ranges, up to 4.6 MeV. Energy calibrations were done using the

well-known states in 136Ba up to an excitation energy of 2.5 MeV, and beyond that using

known states in 134Ba that were produced via the 136Ba(p, t) reaction. Elastic scattering

angular distribution measurements were done from 15◦−115◦, to determine the optimum

proton optical model parameters and to accurately measure the 138Ba target thickness.

57



3.5.2 138Ba(d, α)136Cs

Using this reaction we populated states in 136Cs up to ∼ 2.6 MeV in excitation energy.

For this experiment ∼ 600 nA of 22 MeV deuterons were incident on the 138Ba target.

For energy calibration we used the 94Mo(d, α)92Nb and 92Zr(d, α)90Y reactions, with en-

riched 94MoO3 and 92Zr targets that had approximate thickness of of 100 µg/cm2 and

50 µg/cm2 respectively. The (d, α) spectra were collected at laboratory angles of 5◦− 45◦

with increments of 5◦. To determine the target thickness and optimal deuteron optical

model parameters, elastic scattering angular distribution measurements were done for

θlab = 15◦ − 115◦.

All reactions were performed with the carbon-backing side facing the beam to minimize

additional straggling effects on the ejectiles due to the carbon backing. Additionally, the

elastic scattering data were obtained with the target frame rotated so that the target

angle is set to half the Q3D angle (w.r.t. incident beam direction) while for the (d, α)

reactions the target angle equals the Q3D angle. However, for the (p, t) and (p, p) runs,

due to a malfunction of the motor controlling the target frame, the angle was set at a

fixed value of 19.6◦.
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4 Data Analysis

We have to remember that what we observe is not nature herself,

but nature exposed to our method of questioning.

Werner Heisenberg

In this chapter I discuss details of various analysis procedures employed to determine

differential scattering cross sections, excitation energies and spin-parities of states in 136Ba

and 136Cs nuclei, from the (p, t) and (d, α) reactions. The procedure to calibrate the focal

plane spectra is outlined in detail, while results are discussed in the following chapters.

4.1 Particle Identification

Since a given nuclear reaction can have several exit channels, different ejectiles will be

detected at the focal plane of the spectrometer. To ensure that the data collected corre-

spond only to (d, α) and (p, t) reactions, appropriate particle identification gates need to

be set on the ejectiles. In the data acquisition software, this is accomplished by setting

two different gates. The first gate is set by comparing the partial energy loss in the two

proportional counters (∆E1 with ∆E) and the second one by comparing the energy loss

in the second counter with the total energy (E) deposited in the plastic scintillator. This

was done by plotting 2-dimensional (2D) histograms of ∆Eanode vs ∆Eanode1 and ∆Eanode

vs Eresidual. Fig. 4.1 shows the alpha gates set using these 2D plots for the 138Ba(d, α)

reaction.
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Figure 4.1: Particle identification spectra - left panel: ∆E − ∆E1, partial energy loss of the
ejectiles in the two proportional counters. Right panel: ∆E −E spectrum from the second pro-
portional counter and the plastic scintillator. In the ∆E−E spectra it is difficult to distinguish
between the protons from 138Ba(d, p) and deuterons from 138Ba(d, d) as the energy deposited
by these two ejectiles is very similar. However the tritons from 138Ba(d, t) have comparatively
less energy and thus higher energy loss (compared to the deuterons and protons) and thus the
left blob in the right figure. The energy loss information from the ∆E −E spectra can then be
easily used to deduce the position of the tritons in the ∆E −∆E1 spectrum.

4.2 Peak fitting

Once the correct reaction was selected, the peaks at the focal plane were fit using a

Levenberg-Marquardt χ2 minimization [146] procedure to obtain peak centroids and areas.

The lineshape function used is the convolution of a Gaussian with a low energy exponential

tail on a flat background [147]. The low energy exponential tail accounts for the energy

straggling of the ejectiles through the target material and the focal plane detector. An

example is shown in Fig. 4.2.

4.3 Energy calibration

While states in 136Ba have been extensively studied in the past, information on excited

states above ∼4 MeV in this nucleus was limited [129]. Additionally, as mentioned previ-

ously, very few excited states in 136Cs were known prior to this work [129]. Therefore, to

calibrate the 138Ba(p, t) spectra above 2.5 MeV we used the 136Ba(p, t) reaction and for

60



1

10

100

C
o

u
n

ts
 p

er
 c

h
an

n
el

1560 1580 1600 1620 1640 1660 1680 1700 1720 1740

Focal plane position (channels)

-3
-2
-1
0
1
2

R
es

id
u
al

s

Figure 4.2: A sample fit to the uncalibrated 1866 keV peak in 136Ba. The lineshape function is
the convolution of a Gaussian with a low energy exponential tail on a flat background.

the 138Ba(d, α) we used the 94Mo(d, α) and 92Zr(d, α) calibration reactions. To perform

these calibrations, we converted the excitation energies of 134Ba (92Nb and 90Y) [148–150]

to ‘effective’ excitation energies of 136Ba (136Cs) by using relativistic kinematics discussed

in Appendix A after taking into account energy loss corrections. The detailed procedure

is described below.

4.3.1 Effective excitation energy transformations

To describe this procedure in the most general way possible I use two notations. Reaction

P(a, b)Q represents 138Ba(p, t) and 138Ba(d, α) reactions, while X(a, b)Y represents the

136Ba(p, t)134Ba, 92Zr(d, α)90Y and 94Mo(d, α)92Nb calibration reactions. For the generic

transfer reaction

a+X → b+ Y , (4.1)

the projectile a bombards the target X resulting in the excitation of the nucleus Y and

the emission of the ejectile b, that is detected at an angle θlab with respect to the direction
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of incident beam. Following the laws of 4-momentum conservation, one can obtain the

relativistic momentum (pb) and kinetic energy (Eb) of the ejectile in the laboratory frame.

These can be used to extract relevant excitation energies of the nucleus Y. These kine-

matic relations are briefly discussed in Appendix A and the procedure to convert a focal

plane centroid from the X(a, b)Y reaction to an effective excitation energy for P(a, b)Q is

described below.

1. Assuming the reaction happens at the center of the target, calculate the energy loss

of the beam in the target

E ′a = Ea −
∫ TX

2

0

dx

(
dE

dx

)
Ea

, (4.2)

here Ea is the kinetic energy of the incident beam, dE/dx is the energy loss of the

projectile per unit length of the target material and Tx is the full thickness of the

target X.

2. Using the reduced beam energy E ′a and Eq. (A.14), obtain the momentum pb corre-

sponding to the calibration reaction X(a, b)Y. This momentum pb is the ‘effective’

momentum for the P(a, b)Q reaction.

3. Convert the effective momentum pb to kinetic energy of the ejectile (Eb) using the

relativistic mass-energy relation

Eb =
√
p2
b +m2

b −mb . (4.3)

The ejectile b in this step corresponds to the P(a, b)Q reaction.

4. In an actual experiment performed in the laboratory, this ejectile loses energy in

half of the target material P. In order to account for this energy loss, we add back

the energy lost by the ejectile

E ′b = Eb +

∫ TP
2

0

dx

(
dE

dx

)
Eb

. (4.4)
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Here, dE/dx is the stopping power of the ejectile b in the target material P and TP

is the full thickness of the target.

5. Convert the kinetic energy E ′b for the ejectile to a new momentum p′b.

p′b =

√
(E ′b +mb)

2 −m2
b (4.5)

6. Calculate the effective excitation energy of Q using momentum p′b and variables

of the P(a, b)Q reaction in Eq. (A.17). This converts the excitation energies of

the nucleus Y into effective excitation energies of Q while implicitly correcting for

the Q-value difference between the two reactions. As the energy loss of the beam

is different in the targets P and X, to obtain the effective excitation energy from

Eq. (A.17), E ′a in this step should correspond to the energy loss of the beam in

target P.

7. Use a quadratic regression together with a modified Gaussian χ2 statistics. Fit the

focal plane centroids of the X(a, b)Y reaction to the effective excitation energies

calculated in the previous step. To perform the modified χ2 minimization, uncer-

tainties in both the effective excitation energy and the focal plane centroids are

used, so that

χ2 =
∑
i

[yi − yfit(xi)]
2(

σ2
yi

+ σ2
xi
dyfit(xi)2

dx

) . (4.6)

The sum is over all the excited states in the nucleus Y that are used for the calibra-

tion. The coordinates (x, y) and their uncertainties (σx, σy) in the above equation

correspond to the focal plane centroids and effective excitation energies respectively.

A ROOT program using the MINUIT library was written to perform this minimiza-

tion and obtain fit coefficients for the polynomial

E(xi) = A0 + A1xi + A2xi
2 . (4.7)

This was because the curvature of the focal plane detector implies that the relation
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between the focal plane position and momentum (and consequently the effective

excitation energy) of the ejectiles do not have a linear relationship.

8. Use the coefficients A0, A1 and A2 to convert the focal plane positions of the P(a, b)Q

reaction to excitation energies of the nucleus Q.

To validate the above procedure, we calibrated the 94Mo(d, α)92Nb focal plane spectrum

using 92Zr(d, α)90Y as the calibration reaction. Based on the success of the method, the

138Ba(d, α) and 138Ba(p, t) reactions were calibrated using a set of C++ programs and shell

scripts. The calibrated spectra are shown in Sections 5.1 and 6.1.

4.3.2 Corrections due to energy loss in targets

If energy losses of the triton or alpha particles through the target materials are not

corrected for, they would affect the final determination of effective excitation energies.

This would be most significant for alpha particles passing through the molybdenum target.

This is clearly evident in Table 4.1, where the difference in energy loss for the alphas

between the molybdenum and barium targets is ∼ 5 keV. For the 138Ba(d, α) measurement

our aim was to provide information about excited states in 136Cs with uncertainties much

less than 5 keV. Hence, it was imperative that we correct for the alpha energy losses

between the barium, molybdenum and zirconium targets.

Table 4.1: Energy losses for 22 MeV deuterons, 30 MeV alphas, 23 MeV protons and 15 MeV
tritons. The total energy loss for the projectiles (deuterons and protons) are calculated assuming
that they pass through the full backing material and half the target material. While the ejectiles
(alphas and tritons) are assumed to traverse through the other half of target material.

Target Backing Energy loss (keV)
(nominal thickness) (nominal thickness) p t d α
138BaCO3 (40 µg/cm2) 12C (30 µg/cm2) 0.905 0.889 1.681 2.716
136BaCO3 (40 µg/cm2) 12C (30 µg/cm2) 0.902 0.881 – –
92Zr (50 µg/cm2) 12C (12 µg/cm2) – – 1.042 0.458
94MoO3 (100 µg/cm2) 12C (40 µg/cm2) – – 2.834 7.332

The energy losses for the protons, tritons, deuterons and alpha particles were estimated

using the Stopping and Range of Ions in Matter (SRIM) program [151]. SRIM requires
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information about the type of charged particle, target material composition and target

material density. It then outputs the energy loss per unit length
(
dE
dX

)
as a function of

kinetic energies. We adopt a conservative 10% relative uncertainty in the extracted
(
dE
dX

)
values. These values are then fit to a suitable Nth order polynomial using a least squared

minimization routine,

dE

dX
=

N∑
i=0

AiE
i. (4.8)

For both (d, α) and (p, t) reactions we found that an order 4 polynomial gave a good fit to

the SRIM data. These coefficients are then used to calculate
(
dE
dX

)
at desired interpolated

energies as the beam and ejectiles traverse the target material. This interpolation was
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Figure 4.3: Least squared fit to energy loss values obtained from SRIM [151] for α particles
passing through a 94MoO3 target. The lowest order polynomial that adequately describe the
SRIM output values within the required energy range was found to be 4. This procedure was
repeated for all the charged particle-target combinations encountered in this analysis.

used to calculate the energy loss of the beam and ejectiles described in Eq. (4.2) and (4.4).

The path of the beam and ejectiles as they traverse the target material and loose energy

is depicted pictorially in Fig. 4.4.
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Figure 4.4: A schematic representation depicting the path of the charged particles through the
target material. Assuming the reaction occurs at the center of the target, the projectile with
energy E passes through the backing and half the target material where it loses energy E−Eloss.
The resulting ejectile with energy Enew then passes through the other half of the target where
it additionally loses energy (Enew − E′loss) before it is detected at the focal plane.

4.3.3 Uncertainties on effective excitation energy

Below I discuss various uncertainty contributions in this analysis.

1. Reaction kinematics requires information of the beam energy, masses of the nuclei

and the Q3D calibration angle. Thus uncertainties in the beam energy and masses of

the nuclei involved contribute. The uncertainty in the angle arises due to the angular

acceptance of the Q3D and depends on the x-slit width (∆x) and the distance (D)

between aperture and target and is given by

∆θ = tan−1

(
∆x

2D

)
. (4.9)

2. Energy loss corrections depends on the target thickness, energy loss parameters

obtained using SRIM and the target thickness where the reaction occurs. In this

thesis, we assume that the reaction happens at the target center. This is based

on the assumption that thickness of the target is uniform, which in turn, results

in a uniform distribution of the charged particle’s momentum (and kinetic energy)
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along the target [152, 153]. The 1σ variation due the ‘reaction location thickness’

(Tloc = Tmax/2) is

σ =

√
1

12
(Tmax − Tmin)2, (4.10)

where Tmin = 0 and Tmax is the full target thickness. The reaction location un-

certainty is calculated for the 138BaCO3 target as well as the calibration targets,

136BaCO3, 94MoO3 and 92Zr.

4.4 Cross Section Calculation

To determine the spin and parity of the states excited in 136Ba and 136Cs, we need to

calculate differential scattering cross sections for these states at different angles. These

experimental cross sections are proportional to the ratio of the total counts under the

peak (Nc) with respect to the number of reaction centers (Nt) per unit area in the target

and the number of incident beam particles (Nb) over the duration of the experimental

run. Thus the cross section in the laboratory frame are calculated as

(
dσ

dΩ

)
lab

=
Nc

Nt Nb LTDet LTASIC Ω
1034 (mb/sr) . (4.11)

These cross-sections are corrected for the live time of the detector (LTdet) and the data

acquisition system (LTASIC) and take into consideration the angular acceptance of the

Q3D, denoted by Ω. The determination of the parameters in the above formula are

described in Sections 4.4.2, 4.4.3 and 4.4.5. Finally, for comparison of the experimental

angular distributions with DWBA calculations, the laboratory angles and cross-sections

need to be transformed to their equivalent values in the center-of-mass frame. For this

purpose, the following formulae are employed [89]

θcm = sin−1(γ sinθlab) + θlab, (4.12)

(
dσ

dΩ

)
cm

=

(
dσ

dΩ

)
lab

(
1 + γ cosθcm

(1 + 2γ cosθcm + γ2)3/2

)
, (4.13)
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where the scaling factor γ is,

γ =

√√√√√m1 m3

M2 M4

 1

1 +
(

1 + m1

M2

)
Q
E

. (4.14)

Here, m1,m3,M2,M4 are the masses of the projectile, ejectile, target and recoil nuclei, Q

the reaction Q value for the excited state and E the beam energy.

4.4.1 Elastic scattering

The purpose of performing elastic scattering cross section measurements is two-fold.

Firstly, they determine a suitable set of optical model parameters to analyze the data.

Secondly, they help to determine the target thicknesses accurately. These are discussed

in further details below.

Choosing the optical model parameters

To perform DWBA calculations we need to use suitable optical model parameter (OMP)

sets for the entrance and exit channels of the (p, t) and (d, α) reactions. To do this,

we compare the ratio of elastic scattering cross sections to Rutherford cross sections with

DWBA predictions from several different global OMPs. We choose the ratio to Rutherford

instead of the absolute elastic scattering cross section because the difference in the optical

model parameters arise from the nuclear component of the interaction rather than the

Coulomb part. Thus one can reliably select the correct optical model parameters by

comparing experimental ratio-to-Rutherford cross section with DWBA predictions. The

experimental elastic cross section
(
dσ
dΩ

)
elastic

is calculated using Eq. (4.11)-(4.14), while

the Rutherford cross sections is

(
dσ

dΩ

)
Rutherford

= 10

[
z1z2α(~c)

4Ecmsin2
(
θcm

2

)]2

mb/sr . (4.15)

Here, α = 1/137 is the fine structure constant, ~c = 197 MeV.fm, z1, z2 are the atomic

numbers of the projectile and target and Ecm, θcm are the projectile energy and ejectile
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detection angle in the center-of-mass frame. The factor of 10 converts the cross section

from fm2 to mb. We then chose the OMP that gave the least χ2, defined by

χ2 =
∑
i

[YDWBA(θi)− YExpt(θi)]2

σ2
Expt(θi)

. (4.16)

Here YDWBA(θi) and YExpt(θi) are DWBA predicted and experimentally measured ratio-

to-Rutherford cross sections, θi is the center-of-mass angle and σ2
Expt(θi) is the total uncer-

tainty (statistical and systematic) in YExpt(θi). A similar procedure can be implemented

for the exit channels as well if experimental data are available.

Estimating the correct target thickness

Once the correct OMPs are chosen, the elastic scattering cross sections also determine the

correct target thicknesses. This is possible because Rutherford scattering dominates at

low angles. As a result, the measured cross sections are largely independent of the choice

OMP parameters used. This is evident in Figs. 5.3 and 6.3 where the elastic scattering

cross sections computed using different proton and deuteron optical models start diverging

at θ > 15◦. In principle the nominal number of target atoms (based on the nominal areal

density ρt) is given by

Nt =
ρt NA

Mt cosθt
. (4.17)

In the above, Mt is the molar mass of the target (138BaCO3), NA the Avogadro number

and θt is target angle for the frame. The cosθt factor arises due to the fact that the target

frame is rotated for each angle. The calculated scattering cross sections using the Nt

values from Eq. (4.17) is then normalized to DWBA predictions for θ ≤ 15◦, such that

the actual ‘measured’ number of target atoms are

N ′t = Nt β , (4.18)

where β is the normalization factor. The cross sections in Eq. (4.11) for the (d, α) and

(p, t) reactions are then calculated using Eq. (4.17) and Eq. (4.18).
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4.4.2 Beam particle normalization

To calculate the absolute cross-section of an excited state using Eq. (4.11) we need to know

the total number of particles (Nb) that are incident on the target over the experiment.

This information is provided by a Brookhaven Instruments Corporation (BIC) current

integrator. BIC was connected to the Faraday cup placed behind the target at 0◦ to the

beam axis. As most of the beam goes undeflected, the integrated current on the Faraday

cup is proportional to Nb. The total current recorded on the Faraday cup is converted

into digital pulses and stored in the data acquisition (DAQ) system using a scaler module

(named Scaler1). Since the digitizing rate for the BIC is set at a fixed value of 1 kHz full

scale from the manufacturer, the integrated Nb value can be determined as

Nb = Scaler1
full scale

1000 Ne

, (4.19)

where, Ne is the total charge state of the projectile in units of the elementary charge and

the full scale setting for our experiment was 2× 10−6.

4.4.3 Dead time corrections

The absolute measured cross-sections are affected by the dead times of the detector and

the data acquisition system. When the incoming event rates are higher than the event

processing time, the detector goes ‘dead’ and any event that is received in this time

interval will be not be processed. In such a situation, if the DAQ is processing an event,

a ‘busy’ signal is generated and the current integrator increments the quantity called

Scaler3. Thus the ratio of Scaler3 to Scaler1 gives the DAQ dead time, which can be

related to the live time (LT) by the relation

LTDAQ = 1−
(
Scaler3

Scaler1

)
(4.20)

The dead time associated with the detector is due to the application-specific integrated

circuits (ASICs) that digitize the signals from the cathode strips. If the ASIC is busy
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processing a signal, it increments the quantity in channel 0 of the analog-to-digital con-

verter (ADC) unit. A good ADC signal is typically stored between ADC channels 1 and

2550. Thus to get the total ASIC livetime we need to take the ratio of counts in channel

0 to the total integrated counts in the spectrum

LTASIC = 1−

(
channel(i = 0)∑2550

i=0 channel(i)

)
. (4.21)

4.4.4 Dark current correction

Noise in the current integrator circuit will lead to an over-estimation inNb and an incorrect

determination of the DAQ live time. In order to estimate this we recorded Scaler1 and

Scaler3 over an extended interval of time with no beam on target. The small corrections

due to the ‘dark current’ were performed using the relations

Scaler1corrected = Scaler1with beam −
(
Scaler1no beam

Run timeno beam

)
Run timewith beam (4.22)

Scaler3corrected = Scaler3with beam −
(
Scaler3no beam

Run timeno beam

)
Run timewith beam . (4.23)

4.4.5 Solid Angle Estimation

The ejectiles from the scattering chamber enter the detector via a diamond shaped aper-

ture with height 2B and width 2A shown in Fig. 4.5. The solid angle is controlled by

changing the distance between the horizontal and vertical slits, while the height and width

of the diamond-shaped opening is fixed at 63 mm and 73.5 mm respectively. The distance

D between the aperture and the target is fixed at 354.8 mm. The solid angle Ω for this

setup is calculated as,

Ω =
1

D2

[
4∆x∆y − 2

(
∆x− A +

A∆y

B

)(
∆y − B +

B∆x

A

)]
. (4.24)

Here ∆x = x− xoff and ∆y = y − yoff is distance between the x and y-slits and xoff , yoff

are their systematic offsets and are further discussed in Section 4.4.6. The y-slits are

71



Figure 4.5: Schematic representation of the Q3D opening with the slits.

set at a constant opening of 24.5 mm for the entire duration of the experiment while

the x-slits are altered to change the solid angle opening. When the distance between

the slits is too small, the second term in Eq. (4.24) does not contribute. However, when

the distance between the slits is large enough, the corners of the square are obscured by

the diamond-like shape of the aperture. This happens when the criterion, x
A

+ y
B
> 1 is

satisfied.

4.4.6 Slit offset calibration

Due to the wear and tear of the micrometer screw gauges that control the opening of the

slits, there is a systematic offset at the read out. As evident in Eq. (4.24), to accurately

calculate the solid angle, one needs to determine the x and y offsets (xoff , yoff). To

calculate these offsets, a linear regression is performed between the ratio of dead-time

corrected elastic peak area to Scaler1,
(

Nc
LT Scaler1

)
and the x-slit width. This is illustrated

in Fig. 4.6 for 138Ba(p, p) elastic data. All other experimental conditions including the

y-slits are left unchanged. The x-intercept of the fit then gives the x-slit offset. The slit

settings and the resulting solid angle for all the runs in this thesis are given in Table 4.2.

The solid angle is significantly reduced for the forward angles especially in the elastic runs

to prevent damage to the focal plane detector due to the high event rates.
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Figure 4.6: Linear fit to the ratio of dead-time corrected elastic peak area over Scaler1 as a
function of different x-slit width.

Table 4.2: Slit settings used for the different experiment runs.

Reaction Lab angle x× y (mm) x-offset (mm) Solid angle (msr)

138Ba(p, t)
5◦ 10× 24.5

-1.90 (4)
9.3 (14)

10◦ − 50◦ 20× 24.5 14.6 (7)

138Ba(p, p)
15◦ − 25◦ 1× 24.5 2.3 (15)

30◦ 5× 24.5 -1.90 (4) 5.4 (15)
35◦ − 115◦ 20× 24.5 14.6 (7)

138Ba(d, α)
5◦ − 10◦ 8× 24.5

0.618 (3)
5.7 (5)

15◦ − 45◦ 21× 24.5 14.1 (2)

138Ba(d, d)
10◦ − 20◦ 2× 24.5

0.618 (3)
1.1 (5)

20◦ − 60◦ 8× 24.5 5.7 (5)
138Ba(d, d)
Dec 2016

10◦ − 35◦ 2× 24.5
0.623 (8)

1.1 (5)
40◦ − 115◦ 21× 24.5 14.1 (2)
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4.4.7 Uncertainties in Cross-Section

In addition to the statistical uncertainties on the differential cross sections, several sys-

tematic uncertainties contribute to our measurements. For example, to estimate the

uncertainty contribution from the target thickness, we rely on elastic scattering data.

However, as discussed in Section 4.4.1 this method is heavily dependent upon the choice

of optical model parameters. Therefore, the uncertainty in the target thickness arising

from different OMPs will affect the determined experimental cross sections. Furthermore,

uncertainties in the laboratory angles, masses of the nuclei, reaction Q values and the

beam energy will also contribute to the final uncertainty in the measured values.

4.5 DWBA Calculation

In order to determine the Jπ of the states, the experimental angular distributions are

compared with the DWBA angular distributions. Based on the agreement between the

shapes of the two distributions, the states is assigned a particular value of spin and

parity. Several DWBA codes have been developed over time to calculate observables for

elastic and inelastic scattering as well as transfer reactions. Some of the major differences

between these codes are in the approximations used. For example, in the use of zero or

finite-range approximations, or if the DWBA approximation is to first order (single-step

transfer) or second-order (sequential transfer). In this thesis, the DWBA analysis was

performed using the DWUCK4 [93] code, which is discussed in the following section.

4.5.1 DWUCK4

The DWUCK4 reaction code does zero-range, single-step DWBA calculations with an

option to make finite-range corrections. However, does not perform coupled-channel or

multi-step calculations. In our case finite range corrections are important for the (d, α)

data. Such corrections donot have significant effect on the calculated cross sections for

(p, t) reactions. DWUCK4 allows the usage of various potentials to calculate the reaction

cross sections. For instance, one can use Woods-Saxon potential (WS), the WS scaled
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by a rpower term, a Legendre polynomial expansion of the volume WS (with options for

specifying the nuclear deformation), harmonic oscillator and other user-defined external

potentials. The form of the potential is specified in the input file using an appropriate

value for the variable ‘OPTION’. Each OPTION type defines a specific potential, with

both the real and imaginary components. As the generic form of the optical model poten-

tial is a sum of volume, surface and spin-orbit Woods-Saxon potential (see Section 2.1),

we used a similar form in the DWBA calculations for the data described in this thesis.

In DWUCK4 terminology this potential is constructed by using OPTION = 1.0, 2.0 and

4.0 resulting in,

V (r) =− VRf(xR)− iVIf(xI) OPTION = 1.0

+ VRg(xR) + iVIg(xI) OPTION = 2.0

−
(
VSOR
r

df(xR)

dr
+
iVSOI
r

df(xI)

dr

)
~L.~s OPTION = 4.0

(4.25)

The form factors f(xi) and g(xi) are defined as,

f(xi) =

(
1 + e

(
r−r0iA

1/3

ai

))−1

, (i = R, I) (4.26)

g(xi) =
df(xi)

dx
(4.27)

The strengths of real and imaginary potentials (VR and VI), the reduced radius of the

target or recoil nucleus (Ri = r0iA
1/3) and the diffuseness of the potential, (ai) for the three

forms of the Woods-Saxon potentials are taken from the global optical model parameter

(OMP) sets. In these global OMP sets, the VR’s are usually denoted by Vv or VR for

real volume Woods-Saxon and Vso for the real part spin-orbit potential. The real part

of the surface potential is usually zero. The imaginary potentials are denoted by WR for

the volume potential, WS or WD for the surface Woods-Saxon and usually Wso for the

spin-orbit potential is set to zero. In addition to the differences in notations between

DWUCK4 and the global OMPs, the strength of the potentials also need to be scaled.

These are mentioned below.
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1. DWUCK4 does not include the factor of 4 in the surface Woods-Saxon potential.

Hence to match the global OMP, the DWUCK input needs to be adjusted to

VI(DWUCK) =4× VI(= WD or WS)

=4× VI(OMP) .
(4.28)

2. The spin-orbit term in DWUCK4 is defined as ~L.~s as opposed to ~L.~σ in the global

optical potentials and without the factor of 2 for
( ~

2π

)2
. VI for the spin-orbit poten-

tial needs to be adjusted accordingly to account for this scaling between DWUCK4

and the global optical potential

VSOR(DWUCK) = 2× 2 Vso(OMP) . (4.29)

As mentioned earlier, finite-range (FR) corrections are important for the (d, α) reaction.

DWUCK4 accounts for the FR effects by multiplying the form factor in the scattering

amplitude by the function [93]

WFR(r) = exp[−A(r)] , (4.30)

where

A(r) =
2

~2

mbmx

ma

R2 [Eb − Vb(rb) + Ex − Vx(rx)− Ea + Va(ra)] . (4.31)

For the reaction A(a, b)B, where transferred particle is labeled by x the energies (E)

and potentials (V ) are given w.r.t. the target nucleus A. The finite-range correction

parameter is R and it’s usage is discussed further in Section 6.3. Detailed description for

the DWUCK4 input file is given in Appendix B.

4.6 Identification of impurities

Impurities in the targets arise from three primary sources.

1. Similar mass impurities: These impurities arise from nuclei in the target sample that
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have a similar mass as the barium but are not isotopes of barium. The only stable

A = 138 candidates are lanthanum and cerium. The presence of these impurities is

highly unlikely. Furthermore, the large differences in reaction Q values immediately

rules out the possibility of contaminants from the 138La(d, α) reaction. A careful

analysis of the 138Ba(p, t) and 138Ba(d, α) spectra showed no signs of contamination

from the 138Ce(d, α), 138Ce(p, t) or 138La(p, t) reactions.

Table 4.3: Ground state reaction Q-values (in MeV) for the possible contaminants. The Q
values for reactions on 138Ba target are shown for comparison.

138Ba 138La 138Ce 16O 12C 13C 14C

(d, α) 8.787 13.070 9.177 3.110 -1.340 5.168 0.361

(p, t) -7.035 -8.142 -8.723 -20.41 -23.36 -15.185 -4.64

2. Isotopic impurities: Possible isotopic contamination in the 138Ba target could arise

from 134−137Ba as these are the only stable barium isotopes with a relative abun-

dance > 1% in natBa (see Table. 4.4). We did not explicitly identify contributions

from isotopic impurities in both the 138Ba(d, α) and 138Ba(p, t) spectra, given the

high enrichment level of the targets.

Table 4.4: Reaction Q-values in MeV for the possible isotopic contaminants. The percentages
indicate relative abundance of the isotopes in natural barium.

138Ba 137Ba 136Ba 135Ba 134Ba

(71.7%) (11.2%) (7.8%) (6.6%) (2.4%)

(d, α) 8.787 10.57 8.72 10.93 8.91

(p, t) -7.035 -7.53 -7.6 -7.96 -8.18

3. Light mass impurities: These contaminants arise from moisture and other sources

such as the carbon backing used for making the targets, as well as poor vacuum

in the scattering chamber. Additionally, the 138Ba and 94Mo targets were chemi-

cal compounds that include oxygen (138BaCO3 and 94MoO3). However due to the

difference in reaction kinematics, light mass impurities in the spectra are easily iden-

tifiable as they appear kinematically broadened and move towards lower channels

as the measurements are performed at higher angles.
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All the data analysis procedure described in this chapter are use to arrive at the results

of the (p, t) and (d, α) reactions which are discussed in the next two chapters.
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5
138Ba(p, t)136Ba Results

The first principle is that you must not fool yourself and you are

the easiest person to fool.

Richard Feynman

As mentioned before, the motivation for this experiment was to study neutron pairing

correlations in 136Ba using the 138Ba(p, t) reaction. In this reaction, we observed a total

of 110 states in 136Ba up to an excitation energy of 4.6 MeV. A total of 12 0+ states are

observed, out of which 6 states are being reported for the first time. As the (p, t) reaction

populates all possible natural parity states, unique Jπ assignments could be made for 56

additional newly identified states.

5.1 Energy Calibration

Due to the large negative Q value of the 138Ba(p, t) reaction, the Q3D focal plane spans

∼ 1 MeV in excitation energy per momentum setting. Hence we collected the 136Ba ex-

citation spectra at 4 different momentum settings. The first three momentum bites are

self calibrated using well-known states in 136Ba [85, 129]. Above 2.5 MeV as the density

of states in the focal plane spectrum increases, peak identification becomes increasingly

challenging. Additionally, very few states were previously known in this nucleus above

4 MeV [85, 129]. Thus, tritons produced from the 136Ba(p, t) reaction (at the same mag-

netic setting) are used to perform an additional calibration using well known energy levels

in 134Ba. To accomplish this the relevant states in 134Ba were identified and then converted
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Figure 5.1: Excitation energy spectrum for 136Ba at θlab = 15◦. The triton spectra were collected
at 4 different momentum settings up to 4.6 MeV. All the 0+ states identified from this experiment
are indicated. The red arrows indicate new states observed in this work.

80



0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600

Focal plane position (ADC channel)

0

1000

2000

3000

4000

5000

6000

E
x
ci

ta
ti

o
n
 e

n
er

g
y
 (

k
eV

)
1

st
 Momentum bite calibration data

y =1238.31 -0.512435*x

2
nd

 momentum bite calibration data

y = 2741.63 + (-0.582592*x) + (0.000037125*x^2)

3
rd

 momentum bite calibration data

y = 3694 + (-0.54404*x) + (0.0000355715*x^2)

134
Ba calibration data

y = 4567.03 + (-0.459011*x) + (0.0000286942*x^2)

Figure 5.2: Energy calibrations for the 138Ba(p, t) reaction at 4 different momentum bites. The
small x and y uncertainties are included in the image. The first three bites were calibrated using
known excitation energies in 136Ba. The 4th bite is calibrated using 134Ba excitation energies
that were extracted using the procedure described in Section 4.3.

to effective excitation energies of 136Ba following the procedure outlined in Section 4.3.

The calibrated energy spectrum for θlab = 15◦ is shown in Fig. 5.1.

Table 5.1: Excited states in 136Ba observed with the 138Ba(p, t) reaction. The energies and
spin-parities listed in the first two columns are from the nuclear data sheets for A = 136 [129].
Statistical and systematic (see Section 4.3.3) uncertainties are added in quadrature to give
the final uncertainty in our excitation energies. The uncertainties in the last momentum bite
(Ex > 3.6 MeV) are larger compared to the first three, due to additional contributions from the
systematics of 136Ba(p, t) calibration (target thickness, energy loss, etc).

Literature This work

Ex (keV) Jπ Ex Jπ

0.0 0+ 0.0 0+

818.522(10) 2+ 818.5(6) 2+

1550.987(13) 2+ 1551.4(6) 2+
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Table 5.1 – continued

Ex (keV) Jπ Ex Jπ

1578.969(13) 0+ 1579.7(6) (0+)

1866.611(18) 4+ 1866.1(6) 4+

2030.535(18) 7− 2030.3(6) 7−

2053.892(18) 4+ 2053.6(6) 4+

2080.13(3) 2+ 2080.3(6) 2+

2128.869(25) 2+ 2129.3(6) 2+

2140.237(18) 5− 2140.2(6) 5−

2222.709(19) (2)+ 2223.4(6) 2+

2298.69(4) (6−) 2299.0(6) 6+

2315.26(7) 0+ 2315.5(6) 0+

2356.497(22) 4+ 2356.3(7) 4+

2399.94(5) (1)+ 2399.8(7) (1−)

2485.13(5) 2+ 2485.3(7) 2+

2532.653(23) 3− 2532.4(6) 3−

2544.481(24) 4+ 2543.8(6) (5−, 6+)

2587.08(3) (5)+ 2587.6(7) 4+

2646.4(8) 7−

2661.48(5) 1, 2+ 2660.4(7) 2+

2784.44(13) 0+ 2783.4(7) 0+

2829.9(8) 6+, 7−

2840.74(10) (4+) 2839.1(7) 4+

2854.3(7) 5−

2905.0(5) 2902.0(7) (4+, 5−)

2935.1(9) (1, 2+) 2935.1(7) (1−, 2+)

2977.67(18) 2977.1(7) 0+

3007.2(8) 5−

3022.10(8) (1, 2+) 3021(1) 2+

3044.54(5) 1(−) 3044.5(7) (1−, 3−)

3089(1) (4+, 5−)

3109.59(9) 2+ 3108.7(8)

3116.08(6) 2+ 3115.3(9) 2+

3170.0(7) 6+

3212.0(5) 0(+), 1, 2, 3(+) 3210(1) (2+, 3−)

3221(2) (2+)

3241.89(17) 3244.7(7) 2+
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Table 5.1 – continued

Ex (keV) Jπ Ex Jπ

3278.6(7) 0+

3297.1(8) 5−

3310(1) (1−, 2+)

3335.6(3) 3336.2(7) 2+

3354.5(3) 3356.7(8)

3370.07(21) 3369(1) (1−, 2+)

3378.0(5) 3381(1) 2+

3426.7(8) 0+

3435.0(1) 1− 3435.1(7) (1−, 2+)

3468.2(9)

3505.5(9) 0(+), 1, 2, 3+ 3498.7(8) (2+, 4+, 5−)

3526.7(4) 2+ 3527.6(7) 2+

3547.9(7) 4+

3640(1) 4+

3660(1) 2+

3684(1)

3691.92(13) (1− 3) 3691(1) 5−

3706.1(6) (1, 2+) 3708(2) (1−, 2+)

3720(1) (J > 5)

3739(1) (2+)

3754(1) (4+, 5−)

3768.9(3) 1(−), 2, 3+ 3768(1) 3−

3795.34(15) (1, 2+) 3799(1) (1−)

3808(1) (3−)

3842(1) 2+

3858(2) (5−, 6+)

3863.47(23) (1, 2+) 3868(1) (2+, 6+)

3883(2) (7−, 8+)

3902(1) 2+

3921(1) 0+

3972(1) 2+

3979.76(20) (1) 3980(1) 4+

3992.56(19) 0(+), 1, 2, 3+ 3994(1) (2+)

4011(2) (3−)

4029(1) (1−, 2+)
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Table 5.1 – continued

Ex (keV) Jπ Ex Jπ

4042(1) (1−, 2+)

4052(1) 2+

4064(1) (5−, 6+)

4075(10) 4070(2) (2+, 3−)

4079(2)

4107(2) (3−)

4120(1) 4+

4127(2) 2+

4147(1) (0+, 4+)

4156(1) (5−, 6+)

4185(2)

4193(2)

4201(2)

4214.9 4213(1) (5−)

4231.17(20) 1 4233(2) (2+, 3−)

4250(1) 2+

4268(1) (1−, 3−)

4279(2) (1−, 2+)

4292(2) (2+, 3−)

4312(2) 3−

4344(1) 0+

4383(2) (4+, 5−)

4394(2) 2+

4406(2)

4413.28(10) (1) 4416(1) (1−, 2+)

4421(2) (1−, 2+)

4444(1) 0+

4451(2) 3−

4475.18(10) (1) 4475(2) (2+, 3−)

4487(2) (2+)

4497(1) (2+)

4517(2)

4536.4(3) 1 4534(2) (0+, 4+)

4547(1) 2+

4558(2)
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5.2 Elastic scattering

As discussed earlier in Sect. 4.4.1, to obtain the optimal proton optical model parameter

(OMP) set, we compare our measured experimental elastic differential cross sections (as

a ratio-to-Rutherford) with DWUCK4 calculations. Proton OMPs suitable for this (p, t)

reaction are the ones given by Becchetti and Greenlees (BG) [154], Koning and Delaroche

(KD) [155], Varner et al. [156], Menet et al. [157] and Walter and Guss (WG) [158]. To

decide the OMP set that best describes the incoming p−138Ba channel, we normalize the

DWBA cross sections to experimental data using a chi-squared minimization routine and

choose the OMP set that gives the least χ2 value. Thus we find that the OMP from

Ref. [156] is the optimal choice. The reduced chi-square values given in Table 5.2 affirms

this choice.

Table 5.2: Normalization factors β for experimental elastic (ratio-to-Rutherford) scattering
cross corresponding to different global proton OMP sets used in DWUCK4.

Optical Model Parameter set Normalization factor (β) χ2
ν

Varner et al. [156] 0.639 784
Becchetti & Greenlees [154] 0.647 1809
Walter & Guss [158] 0.640 2014
Menet et al. [157] 0.639 3268
Koning & Delaroche [155] 0.645 3873

To determine the correct target number of target nuclei (N ′t) we normalize experimental

ratio-to-Rutherford cross section to DWBA prediction using the OMP of Ref. [156] at

θCM = 15.11◦. This gave us a normalization factor of β = 0.64 ± 0.01 which further

translates to a measured target thickness of ρt′ = 25± 2 µg/cm2.

5.3 DWBA Calculations

To calculate the (p, t) differential cross-section in DWUCK4 [93] we assume a single step

transfer of a di-neutron in a S = 0, (singlet) state. To describe the interactions in the

entrance (p-138Ba) and exit (t-136Ba) channels in DWUCK4 we used the Wood-Saxon

form of the optical potential [90]. As mentioned above, we chose the proton optical
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Figure 5.3: Experimental elastic scattering angular distributions for 23 MeV protons on 138Ba
compared with DWBA angular distribution. Global proton optical model parameters used are
from Becchetti and Greenlees (BG) [154], Koning and Delaroche (KD) [155], Varner et al. [156],
Menet et al. [157] and Walter and Guss (WG) [158]. The proton OMP that best reproduces
the elastic scattering data is the one by Varner et al.. [156]. This OMP is further used in the
DWBA analysis.

model parameters from Ref. [156] by comparing experimental and DWBA differential

cross sections for elastic scattering. As experimental triton elastic scattering data on

136Ba or a similar nucleus is not available, we had to choose the triton OMP set that

(in combination with the proton OMP) best reproduces the the ground state angular

distribution. We found that the global triton OMP set by Li et al. [159] was a better fit

to data compared to the one by Becchetti and Greenlees [160]. This is clearly evident

in Fig. 5.4. Thus, for this analysis, we use the proton and triton global OMP sets from

Ref. [156] and Ref. [159]. For each excitation energy, the triton optical model parameters

are calculated as a function of the outgoing triton energy (Table 5.3), while the proton

OMP values are fixed for Ep = 23 MeV. To calculate the two-neutron transfer form
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Figure 5.4: DWBA angular distributions from DWUCK4 for the ground state using different
triton optical model parameters. The OMP from Li et al. (LLC) [159] results in a better fit to
the data compared to the one recommended by Becchetti and Greenlees (BG) [160].

factor, the depth of the real volume term in the neutron OMP is varied so that each

of the transferred neutron gets a binding energy of half the the two-neutron separation

energy and the excitation energy of the residual nucleus

BE =
S2n(138Ba) + Ex(136Ba)

2
. (5.1)

The final optical model parameters used in the calculations are given in Table 5.3.

In DWUCK4 different orbital configurations are used to pick up the two neutrons for

calculating the DWBA cross sections corresponding to different L-transfers. For L = 0

and L = 2, the neutron pair is picked up from the (1h11/2) orbit, due to its proximity to

the Fermi surface [118]. For the 1− states, the combination (3p3/2)(2d3/2) or (3p3/2)(3s1/2)

are the only orbital configurations that can make a 1− state in DWUCK4. In this analysis,

the first combination is used. Based on the results from Ref. [161], for L = 3, 5 and 7

we use the combination (1h11/2)(2d3/2) and for the 4+ and 6+ states the pair is picked up
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Table 5.3: Optical model parameters used for the proton, triton and bound state of the trans-
ferred di-neutron cluster in the DWBA analysis. The proton parameters are used from Ref. [156],
tritons from Ref. [159] and neutrons from Ref. [154].

p t n
Vr 52.938 0.436E2

t − 0.1456Et + 186.8304a – b

rr 1.206 1.094 1.170
ar 0.690 0.795 0.75
Wv 1.226 −0.0097E2

t + 0.5025Et + 7.383 -
rv 1.249 1.2898 -
av 0.690 1.2307 -
Ws 9.105 −0.6451Et + 27.8117 -
rs 1.249 1.1718 -
as 0.69 0.8791 -
Vso 5.90 1.9029 -
rso 1.108 0.4921 -
aso 0.63 0.0497 -
rc 1.260 1.4219 -
λ 25

aEt is the kinetic energy of the outgoing triton calculated for the excited state.
bWell depth adjusted to reproduce the BE for each neutron to be equal to half the two-neutron

separation energy for the excited state (see Eq. (5.1)).

from the (1g7/2) orbit. The shape of the angular distributions in (p, t) reactions does not

depend on the orbital selection for the 2 neutron pick up but the magnitude changes with

the choice of pick up orbital.

The assumption that the single-step (p, t) reaction mechanism is a pure S = 0 neutron pair

transfer with no coupled channel interactions, allow the excitation of only natural parity

states (J = L, π = (−1)L). DWBA angular distributions are then calculated assuming

a specific J = L transfer. These angular distributions are compared with experimental

data to identify the spins and parity of the states populated in this reaction. As evident

from the angular distribution plots in Appendix C, the assumption of a single-step, two-

neutron cluster pickup mechanism in a zero-range approximation worked sufficiently well

to describe most of the states produced in this reaction. All the excited states observed in

this reaction are categorized on the basis of Jπ assignments and each of these are discussed

in details in the following sections.
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5.3.1 Jπ = 0+ states

The identification of 0+ states in (p, t) reactions is fairly simple due to the characteristic

large forward angle cross sections that falls rapidly between 0◦ and 20◦. This is evident

in comparisons made between experimental and theoretical DWBA angular distributions.

Following this procedure, a total of 12 0+ states are identified in 136Ba of which 6 states

are being reported for the first time and the ambiguity in Jπ is resolved for two states.

While we see new 0+ states at 3278.6, 3426.7, 3921, 4147, 4344, 4444 and 4534 keV, the

2141.38 keV state listed in Ref. [129] is not populated in this reaction. We also rule out

the possibility of a doublet at this focal plane position.

• Ex = 1579.7 keV Julian and Fessler [162] first proposed the 1578.9 keV state based

on the β decay of 136La to the 1578.9 keV level of 136Ba. The authors suggested

the state could be Jπ = 0+, 1+, or 2+. They assigned a spin and parity of 2+ to

this level based on the systematics of the 2+ states in similar nuclei and due to the

non observation of a 1578 keV gamma to the ground state of 136Ba. However, in

later work conducted by two separate groups [161, 163, 164], the observation of the

1579.8 keV γ transition, the systematics of even-even nuclei [165] and the observa-

tion of the isotropically distributed 760.5 keV γ-transition to the 818 keV level [166]

from the level at 1578 keV, established the Jπ = 0+ assignment of this state. While

the authors of Ref. [161] did not rule out the possibility of spins 1, 2 and 3, subse-

quent work in 136Ba has been carried out assuming this state is a 0+.

In this (p, t) measurement, the shape of the angular distributions for all the Jπ = 0+

transitions are well reproduced by the DWBA calculations except for this excited

state. To understand this deviation we investigated various scenarios. We first

explored the possibility of a contaminant and an unresolved doublet in the vicin-

ity of the 1578 keV state. We also investigated the possibility of non-zero L

transfers (L = 1, 2, 3, 4) as well as coupled-channel and multi-step effects using

CHUCK3 [167]. None of these gave a suitable explanation and the discrepancy in

the angular distribution of this state remains unresolved.
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• Ex = 2783.4 keV The nuclear data sheets for 136Ba [85] reports a level at 2784.41 keV

with Jπ assignment of (0+). This state has been identified in 135Ba(n, γ) [161, 168]

and 136Ba(n, n′γ) [166] studies. The angular distribution for this state in our (p, t)

measurement is reproduced by the L = 0 transfer, confirming Jπ = 0+ assign-

ment for this state in agreement with the latest update of the nuclear data sheets

(NDS) [129].

• Ex = 2977.1 keV The NDS [85] reports a level at 2976.87 keV with Jπ = (2+, 3+, 4+).

This level was first reported in (n, γ) studies in Ref. [168] with no spin-parity as-

signment. In a later work on (n, n′γ) by Al-Hamidi et al. [169] this state is reported

as 2+, 3+, (4+). The angular distribution for this state matches a L = 0 transfer,

ruling out the tentative assignments.

• Ex = 3278.6, 3921, 4344, 4444 keV No levels are reported in the NDS [85] at

these excitation energy. The angular distribution for these 4 states is consistent

with a L = 0 transfer. Thus these states are assigned Jπ = 0+.

• Ex = 3426.7 keV Based on the large forward angle cross sections and the appear-

ance of the first minimum at ∼ 15◦ as from the DWBA calculations, this state is

assigned Jπ = 0+. No state in reported in the NDS [85] at this energy.

• Ex = 4147 keV The unevaluated dataset reports a level at 4137 keV with Jπ = 1

observed in 136Ba(γ, γ′) studies [170]. This state is weakly populated in this work.

The angular distribution for this state follows the characteristic shape of a L = 0

transfer at the forward angles but the second maximum is damped, giving it the

shape of a L = 4 angular distribution between 20◦ and 45◦. As this states is weakly

excited and multi-step processes could alter the shape of the angular distribution

the state is tentatively assigned as (0+, 4+).

• Ex = 4534 keV A broad background from a contaminant on the focal plane at

5◦ and 10◦ sits in the region of the 4531 keV peak. As a result no cross sections

could be extracted for this peak at these angles. While the uncertainty on the cross
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sections for this state is large, from the limited information available, the angular

distribution best matches a L = 0 transfer. The DWBA prediction for L = 4 is also

shown in the figure (in Appendix C) to clarify any ambiguities. No information is

currently available in the NDS [85] for this state. The only available information

is through the most recent 136Ba(γ, γ′) studies [170] where a state at 4536.4 keV is

reported as J = 1.

5.3.2 Jπ = 1− states

• Ex = 2399.8 keV Three levels are reported in the NDS [85] around this excitation

energy. The first level at 2390.79 keV with Jπ = 3− was observed in the 135Ba(n, γ)

and 136Ba(n, n′γ) reactions [161, 166, 169]. However, recent work in (n, n′γ) [171]

determines the spin and parity of this state to be 3+, which being an unnatural

parity state is not likely to be populated strongly in this reaction. The other two

levels are at 2392.1 and 2399.87 keV, both with Jπ = (1+, 2+) [85]. The 2392.1 keV

level was observed only in (n, γ) studies [168]. The 2399.87 keV has been observed

in (n, γ) [161, 169], (d, p) and (n, n′γ) studies. The most recent (n, n′γ) work [171]

report the Jπ = (1)+ for this state. In this work, the general shape of the angular

distribution agrees with a L = 1 transfer and thus we assign the state as (1−).

• Ex = 2935.1 keV The nuclear data sheets report two levels [85,129] in the vicinity

of 2934 keV, one at 2934.40 keV and the other at 2946 keV. The 2934 keV level was

observed in 135Ba(n, γ) reaction [168] but no spin parity assignment was reported.

However later work using the (n, n′γ) reaction [169] report Jπ = (1, 2+) for this

state. The 2946 keV state was observed in the (n, γ) studies [168] and reported as

Jπ = 0(+), 1, 2, 3+. In this work we could not make a definite spin-parity assignment

but the experimental data seems to follow an angular distribution for a L = 1 as

well as a L = 2 transfer. Thus we tentatively assign this state as Jπ = (1−, 2+).

• Ex = 3044.5 keV This state is reported in the NDS [85] at an excitation energy

of 3044.58 keV as a 1(−) state. This level has been observed in (n, γ) [161, 168]
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(γ, γ′) [172, 173] and (n, n′γ) [169] studies. The negative parity of the state was

confirmed in Ref. [169]. In our work, the angular distribution for this state is

reproduced by assuming an unresolved doublet with L = 1(32%) and L = 3(68%).

• Ex = 3369 keV This state is reported in the NDS [85] at an excitation energy of

3370.07 keV as observed in (n, γ) [161, 168, 174], (γ, γ′) [172, 173] and (n, n′γ) [169]

experiments with spin 1. The authors of Ref. [169] however quote Jπ = 1+. In our

work, the angular distribution for this state resembles a L = 2 transfer better than

L = 1. Hence we assign Jπ = (1−, 2+) to this state.

• Ex = 3435.1 keV A level close to this energy was first reported by Becvar et

al. [163] and later by Gelletly et al. [161] from (n, γ) experiments, but no spin-parity

assignments were made for this state. A nuclear resonance fluorescence experiment

performed later by Metzger [172] led to the 1− assignment for this state. Exper-

imental angular distribution for this state resembles a L = 2 transfer better tha

L = 1. Hence we assign Jπ = (1−, 2+).

• Ex = 3799 keV This state was first observed in the (n, γ) studies of Gelletly et

al. [161], where they suggested the spin of this state as J ≤ 3. In the (n, n′γ)

work by Al-Hamidi et al. [169] this state was assigned Jπ = 1−. The state being

weakly populated, does not distinctly resemble a 1− angular distribution. We thus

tentatively assign this state Jπ = (1−).

We found discrepancies between the experimental angular distributions and DWBA pre-

dictions for even well-known, strongly populated 1− states. Thus we recommend that

states with 1− assignments be used with caution for any future work.

5.3.3 Jπ = 2+ states

In this work we identify 12 new 2+ states at 3221, 3660, 3739, 3842, 3902, 4052, 4127,

4250, 4394, 4487, 4497 and 4547 keV. The ambiguities in 6 energy levels at 2660.4, 3021.1,

3209.7, 3244.7, 3336.2 and 3971 keV could be resolved based on our angular distribution

measurements. These states are discussed below.
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• Ex = 2660.4 keV Two levels are reported in the adopted NDS [85] at 2659.72 keV,

Jπ = 3 to 5 and 2661.41 keV, Jπ = 1+, 2+. The authors of Ref. [171] have

place tentative assignment of Jπ = 5(−) for 2659.72 keV and Jπ = (2)+, (4)+ for

2661.41 keV from 136Ba(n, n′γ). The angular distributions for this level in our work

is consistent with a L = 2 transfer.

• Ex = 3021.1 keV Two states are reported in the adopted NDS at 3019.8 and

3021.92 keV, both with the Jπ assignments of (1, 2+). The authors of Ref. [161]

report the level at 3019.9 keV based on 135Ba(n, γ) reaction. The level was deduced

from observation of a γ transition between the capture state and a level at 3019.9 keV

followed by γ transitions to spin 0 (1579.2 keV) and spin 2 (818.6, 1550.5 keV) states.

The spin (1, 2) assignment is made based on the condition that the 1579 keV state

is 0+ in nature. The authors of Ref. [171] in their 136Ba(n, n′γ) work do not report

the state at 3019.8 keV but do report 3022.19 keV with Jπ = (1, 2+) following the

de-excitation of a 2203.63 keV γ to the 818.5 keV first excited 2+ state of 136Ba.

The angular distributions for the 3021.1 keV level in this work is well reproduced

by a L = 2 transfer. We thus assign it Jπ = 2+.

• Ex = 3209.7 keV In Ref. [168] a level at 3213.5 keV populated via 135Ba(n, γ)

reaction is reported with tentative Jπ assignments of 0(+), 1, 2, 3+. The angular

distribution for this excited state is consistent with L = 2. We thus assign it

Jπ = 2+, thereby resolving the ambiguity in this state.

• Ex = 3244.7 keV A level at 3242.12 keV with Jπ assignment of (2, 3+, 4+) is re-

ported in the NDS [85]. This state is reported only in 136Ba(n, n′γ) measurements,

first in 1994 [169] and later in 2008 [171]. In our case, this level follows the angular

distribution for a L = 2 transfer. Thus our assignment of Jπ = 2+ resolves the

ambiguity in this state.

• Ex = 3336.2 keV This level in only reported in the 136Ba(n, n′γ) work of Ref. [169]

with J = 1 − 3. The angular distribution from this work is reproduced by L = 2

transfer, thus our assignment is Jπ = 2+.
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• Ex = 3972 keV The only excited states reported in NDS [85, 129] in the vicinity

of this state are 3965.51 keV with Jπ = (1, 2+) and 3979.76 keV as Jπ = (1). From

our analysis this state is a 2+ and is possibly reported for the first time.

• Ex = 3221.3, 3660, 3739, 3842, 3902, 4052, 4127, 4250, 4394, 4487, 4497,

4547 keV All these levels are being reported for the first time for 136Ba. The

angular distributions all of these levels exhibit a L = 2 behavior. We thus assign

Jπ = 2+ for all these excited states.

5.3.4 Jπ = 3− states

In addition to the 3− state in 136Ba at 2532.57 keV, three additional 3− states are observed

where a definite assignment could be made. However the first 3− state at 2390.79 keV is

not observed in this (p, t) measurement.

• Ex = 3768 keV In the NDS [85, 129] a level is identified at 3767.1 keV with Jπ =

1(−), 2, 3+ deduced from (n, γ) studies [161]. In this work, the angular distributions

is reproduced by assuming a L = 3 transfer. We assign this state Jπ = 3−.

• Ex = 4312, 4451 keV Angular distributions for both these states are consistent

with a L = 3 transfer. No level is reported in the NDS at these excitation energies.

Our assignment for these two levels is Jπ = 3−.

5.3.5 Jπ = 4+ states

The difference in angular distribution for L = 4 and L = 5 is subtle. While the maximum

of the distribution for the 4+ states is approximately between 25◦ - 35◦, the 5− distribution

peaks between 30◦ - 40◦. For both these L-transfers, the maximum of the distribution

varies within an order of magnitude, as opposed to the 0+ or 2+ states. While the 4+

DWBA distribution has its first minimum at ∼ 15◦, experimental angular distributions do

not always follow this pattern. As such, one needs to compare experimental cross sections

with DWBA for both 4+ and 5−. By carefully following this prescription, we identify
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total of 7 states including the well known ones at 1866.5 and 2053.8 keV, in addition to

several other states with a tentative assignment of Jπ = 4+.

• Ex = 2839.1 keV In the NDS [129] this level is reported at 2840.74 keV with

spin-parity (4+). This level was observed for the first time in 136Ba(n, n′γ) measure-

ment [166] but the authors did not include it in their level scheme for 136Ba. The

authors did not report the Jπ for this state either. In later work by Al-Hamidi et

al. [169], γ transitions corresponding to this level were observed. The authors report

Jπ = 4+ for this level. Our differential cross angular distributions for this level are

consistent with Jπ = 4+.

• Ex = 3547.9 keV An excited state at 3550.70 keV with Jπ = 0 to 4 is reported in

NDS [129]. This state is only observed in 136Ba(n, n′γ) in Ref. [169] and assigned spin

and parity of 2+, 3+, 4+. We find the χ2 minimum value for the angular distribution

consistent with L = 4 transfer.

• Ex = 3640 keV No excited state is reported for this energy in the evaluated or

unevaluated nuclear datasets [85,129]. Our analysis favors the angular distribution

for Jπ = 4+.

• Ex = 3980 keV The NDS [129] lists the spin for a level at 3979.76 keV as (1),

based on 136Ba(γ, γ′) data [172, 173]. In our work a L = 4 transfer represents the

data better tha L = 1.

• Ex = 4120 keV No level is reported at this energy for 136Ba. Our measured dif-

ferential cross section is well reproduced assuming the state is 4+. This assignment

gives minimum value of χ2, when different L transfers are compared with experi-

mental data.

5.3.6 Jπ = 5− states

The adopted level scheme for 136Ba reports a single 5− state at 2140.2 keV [129]. In this

section we discuss previously unreported states where definitive Jπ = 5− could be made.

States with tentative 5− assignments are discussed later.
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• Ex = 2854.3, 3007.2, 3297.1 keV The angular distribution for these states agree

with DWBA predictions for a L = 5 transfer. No states are reported in the NDS [85]

at this excitation energy. We assign these three states with Jπ = 5−.

• Ex = 3691 keV A level is reported in the NDS at 3691.92 keV [129] with a tentative

spin assignment of 1 to 3. This level is adopted from 135Ba(n, γ) studies [161], where

the authors suggests the spin of this level to be 2 or 3. The angular distribution

for this state is well reproduced by a L = 5 transfer. Therefore this might not

correspond to the 3691.89 keV state reported in Ref. [129].

5.3.7 Jπ = 6+ states

The first excited 6+ at 2207.1 keV [129] is not observed in this work. For the next

possible 6+ state at 2298.69 keV, the NDS reports a tentative (6−) assignment [85, 129].

Our measured angular distribution for the state at 2299.0 keV is consistent with a 6+

assignment. A new 6+ state at 3170.0 keV is also observed for the first time in this

measurement. Other possible 6+ states are discussed in Section 5.3.9.

5.3.8 Jπ = 7− states

In addition to the first 7− state at 2030.5 keV [129], we observe a new 7− state at

2646.4 keV. This level has not been reported in the adopted level scheme [129]. Another

state at 3883 keV that is tentatively assigned a 7− is discussed in detail in Section 5.3.9.

5.3.9 Tentative assignments

About 26 states are discussed in this section, where Jπ assignments could not be made

with certainty. For some of these states, due to low statistics, a definitive L cannot be

accepted solely on the basis of χ2 minimization. On the contrary, for some of the strongly

populated states, the DWBA distributions do not reproduce the experimental data (as

well as it does for most other states). Consequently, the Jπ assignment for these states

are tentative.
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• Ex = 2543.8 keV The nuclear data sheets report a level at 2544.51 keV [85] with

tentative spin and parity assignment 0 to 4. In a (n, n′γ) [169] study, this level is

assigned Jπ = 4+. In our work the angular distribution is compatible with Jπ = 5−

and Jπ = 6+, hence we tentatively assign this state to be (5−, 6+).

• Ex = 2587.6 keV The NDS [85] report a level at 2587.05 keV with spin parity 3 to

5. This level is reported from 136Ba(n, n′γ) measurements in Refs. [169] and [171].

The authors of Ref. [171] suggest spins of 5 or 6+. In our case, this level follows the

angular distribution for a L = 4 transfer at larger angles but is better reproduced by

a L = 5 transfer at the smaller angles. The chi-squared for both these distributions

are very similar (χ2
4+ = 100, χ2

5− = 108). We therefore tentatively assign a Jπ =

4+, 5− to this state.

• Ex = 2829.9 keV No level is reported for this excitation energy in the NDS [85].

From our analysis, the χ2 minimum corresponds to L = 7. Due to the low statistics

in this peak, the L = 6 transfer cannot be ignored, hence we tentatively assign

Jπ = (6+, 7−) for this state.

• Ex = 2902.0 keV The adopted level scheme has a level at 2905.0 keV that was

identified in the 135Ba(n, γ) reaction [168]. No spin and parity assignment is reported

for this state. Our angular distribution indicates both L = 4 as well as L = 5

transfer, making it difficult for us to assign a spin and parity for this state. The χ2

minimum however favors a L = 5 angular distribution. We thus tentatively assign

this state Jπ = (4+, 5−).

• Ex = 3088.7 keV As this state is populated quite weakly, the angular distribution

lacks the required statistics for a conclusive measurement. The magnitude and

shape for the cross sections available indicate a L = 4 or L = 5 transfer. We thus

tentatively assign this state Jπ = (4+, 5−).

• Ex = 3221.3 keV Based on the agreement between DWBA and experimental an-

gular distribution up to ∼ 35◦ this state is tentatively assigned Jπ = (2+). This

level is not reported in the NDS [129].
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• Ex = 3310 keV No excited state is reported at this energy in the NDS [85, 129].

The angular distribution in this work is reproduced by a L = 1 as well as a L = 2

transfer. Our chi-squared analysis yields a minimum for L = 2 transfer. We thus

tentatively assign this state Jπ = (1−, 2+).

• Ex = 3498.7 keV The NDS report two levels in the vicinity of 3498 keV, one at

3505.5 keV and the other at 3508.7 keV [129]. The 3505.5 keV level was observed in

a 135Ba(n, γ) reaction [168] with Jπ = 0(+), 1, 2, 3+. The 3508.7 keV state with Jπ =

2, 3+, (4+) was observed in the (n, n′γ) studies [169]. This is a strongly populated

state and the angular distribution is reproduced reasonably well by assuming an

unresolved triplet with Jπ = 2+ (38%), Jπ = 4+ (30%) and Jπ = 5− (32%).

• Ex = 3708 keV The NDS report two levels at 3706.1 and 3706.4 keV with spin-

parity assigned as (1, 2+) for the former and none for the later [129]. The first state

was observed in (n, n′γ) reactions [166, 169] and the second in 139La(82Se,Xγ) [175]

and 198Pt(136Xe,Xγ) reactions [176]. While no spin-parity assignment is made in

Ref. [175] and [176], Al-Hamidi et al. [169] reported this state as spin 1. The large

uncertainty on the cross sections in the current work does not allow to distinguish

between a Jπ = 1− or 2+ assignment. On the basis of a χ2 analysis, the 2+ assign-

ment is favored. Thus we tentatively assign this state Jπ = (1−, 2+).

• Ex = 3720 keV The angular distribution of this state is typical of large L transfers

i.e. increased cross sections with larger scattering angles. As the state is weakly

populated, a definite Jπ assignment cannot be made. Our analysis indicates that

this state is populated by a L > 5 transfer.

• Ex = 3739 keV No state is reported at this excitation energy in the NDS [85].

Our measured angular distributions resembles a L = 2 transfer but since the cross

sections have large uncertainties, a definitive assignment could not be made. We

thus make a tentative assignment of Jπ = (2+).

• Ex = 3754 keV No information is available in the NDS [85] for this excitation

energy. Our least squared minimization procedure indicates both the L = 4 and
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L = 5 transfers. We thus tentatively assign this state Jπ = (4+, 5−).

• Ex = 3808 keV No level is reported at this excitation energy in the NDS [85]. Due

to the low statistics in the peaks and large uncertainties on the cross sections a

definitive spin parity assignment cannot be made for this state. The χ2 minimum

however corresponds to a L = 3 transfer. Thus the tentative assignment for this

state is (3−).

• Ex = 3858 keV Two levels are reported in the NDS [85] in the vicinity of 3858 keV,

one at 3852.7 keV with Jπ = (1, 2+) deduced from (n, n′γ) [169] and the other at

3863.47 keV with Jπ = 0(+), 1, 2+. The angular distribution corresponding to L = 5

or L = 6 reproduces our data better compared to L = 0 − 4. This state is thus

tentatively assigned Jπ = (5−, 6+).

• Ex = 3868 keV The NDS [129] reports an excited state at 3863.47 keV with spin-

parity assignment (1, 2+), which was observed with the (n, γ) reaction [161,174]. The

angular distribution for this state does not represent pure 2+ or 1−. It is however

well reproduced assuming a doublet with Jπ = 2+ (55%) and Jπ = 6+ (45%).

• Ex = 3883 keV A state at 3881.17 keV is reported in the NDS [129] from (n, γ)

studies [169] with spin assignment 1 to 3. This level is also observed with the (γ, γ′)

reaction [170] but no definite spin parity assignments were made. However, the

authors report γ transitions from this level to the 0+ ground state, implying the

state is either a spin 1 or 2. The DWBA distribution for this state is partially

compatible with a L = 1 transfer. We thus tentatively assign this state Jπ = (1−).

• Ex = 3994 keV The NDS report two levels, one at 3992.56 keV and the other at

4008.6 keV [129]. Both the levels were observed in 135Ba(n, γ) reactions [168] with

Jπ = 0(+), 1, 2, 3+ for the first and 1, 2+ for the second. The angular distribution

for our identified 3994 keV state is well reproduced by assuming a doublet with

Jπ = 2+ (50%) and Jπ = 3− (50%). The 4008 keV is very weakly populated with

the (p, t) reaction, with a maximum cross section of ∼ 1 µb/sr.
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• Ex = 4064 keV No information is available in the NDS [85] for this excitation

energy. Our least squared minimization procedure indicates both the L = 5 and

L = 6 DWBA distributions. We thus tentatively assign this state Jπ = (5−, 6+).

• Ex = 4070 keV The angular distributions for this weakly populated state is re-

produced reasonably well with both Jπ = 2+ and Jπ = 3−. In the absence of any

additional information, this state is tentatively assigned Jπ = (2+, 3−).

• Ex = 4156 keV No excitation energy is reported in the NDS at ∼ 4150 keV. The

most probable Jπ assignments for this angular distribution are 4+, 5−, 6+. The χ2
min

corresponds to a L = 5 transfer for this state.

• Ex = 4233 keV Recent work in 136Ba(γ, γ′) [170] reports a level at 4231.2 keV as

spin 1. This level is observed via a 4231 keV γ transition to the ground state. In

our (p, t) measurement, the angular distribution is compatible with Jπ = 2+ or 3−,

with the χ2
min value suggesting a L = 2 transfer.

• Ex = 4279 keV No level is reported at this energy in the NDS [85]. Our measured

angular distribution indicates Jπ = 1−, 2+. As no definitive assignments can be

made, we tentatively assign this state (1−, 2+).

• Ex = 4383 keV No excitation energy is reported in the NDS [129] for this weakly

populated state. The most probable Jπ assignments for our angular distribution

could be 4+ or 5−. The χ2
min favors L = 4 transfer. Our assignment therefore

Jπ = (4+, 5−).

• Ex = 4416 keV A level at 4413.3 keV was recently observed in 136Ba(γ, γ′) stud-

ies [170], where the authors tentatively assign it as spin 1. In this work the angular

distribution is compatible with Jπ = 1− and 2+ but χ2
min favors the state to be 1−.

• Ex = 4421 keV The angular distribution for this state is consistent with both

Jπ = 1− and 2+. However, the minimum value of χ2 indicates Jπ = 1−. Thus we

tentatively assign this state (1−, 2+).
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• Ex = 4475 keV A level at 4475.18 keV was recently observed in the 136Ba(γ, γ′)

studies [170] where the authors tentatively assign it as spin 1. However, the angular

distribution for this state is consistent with Jπ = 2+ and 3−. The χ2
min corresponds

to Jπ = 3−. Thus we tentatively assign this state (2+, 3−).

5.3.10 Indefinite assignments

Due to large uncertainties and in some cases incomplete angular distributions, no reliable

spin-parity assignment can be made for excited states at 3108.7, 3356.7, 3684, 3961, 4079,

4107, 4185, 4193, 4201, 4213 4406, 4517 and 4558 keV.

5.4 Neutron pairing correlations in 136Ba

It is known from theoretical calculations that the neutrinoless double beta decay NME

are enhanced if wave functions of the parent and daughter nuclei are dominated by BCS

like pairing correlations [32]. The (p, t) strength populating excited 0+ states relative to

the ground state gives substantial information about the neutron pairing correlations as

well other important nuclear structure related information. The relative strength (ε) can

be calculated as

ε =

 (
dσ
dΩ

)Expt

0+
ex(

dσ
dΩ

)DWBA

0+
ex

 (
dσ
dΩ

)Expt

0+
gs(
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dΩ

)DWBA

0+
gs

−1

(5.2)

The (p, t) reaction cross section depends strongly on the reaction Q-value. Therefore

relative strength is corrected for the Q-value dependency and other kinematic effects by

dividing the measured cross-sections by its DWBA predicted cross-sections. The resulting

relative strengths for each excited state at θcom ∼ 5◦ are tabulated in Table 5.4. Also

tabulated are relative normalization factors at forward angles for the DWBA predictions.

As evident from the table, there is a large fragmentation in the (p, t) transfer strength

to the 0+
2 =2315 keV and 0+

3 =2784 keV states. The combined strength to the 0+
2 and

0+
3 states that lie just above the pairing gap is ∼ 30% the ground state strength. This

is a clear indication of breakdown in neutron BCS approximation in 136Ba. All 0+ states
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produced in this work are shown in Fig. 5.5.

Table 5.4: Relative strength of populating the excited 0+ states. The relative strength is calcu-
lated as shown in Eq. (5.2). The sum in the last row is the integrated strength of all the excited
0+ states. The excitation energy in the first column are the values from in this work.

Ex (keV) σ (mb/sr)|θCM∼5 ε (%)|θCM∼5 N (5◦ − 15◦) ε (%)
0.0 1.90(1) 100 21392(1602) 100
1579.7(6) 0.063(1) 4.42(8) 1151(300) 5(1)
2315.5(6) 0.149(2) 16.0(2) 3259(625) 15(3)
2783.4(7) 0.130(1) 17.5(2) 3184(189) 15(1)
2977.1(7) 0.0040(3) 0.61(5) 137(13) 0.64(8)
3278.6(7) 0.0355(8) 6.4(1) 764(250) 4(1)
3426.7(8) 0.0072(4) 1.44(9) 262(17) 1.2(1)
3921(1) 0.0084(4) 2.5(1) 467(38) 2.2(2)
4147(1) 0.0160(7) 5.8(3) 1191(95) 6(1)
4344(1) 0.0048(3) 2.1(1) 430(39) 2.0(2)
4444(1) 0.0066(4) 3.2(2) 645(61) 3.0(4)
4534(2) – – 139(71) 0.7(3)∑

59.8 (5) 54 (4)
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Figure 5.5: 0+ states populated in this (p, t) reaction. The measured cross-sections are compared
to normalized DWBA curves.
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6
138Ba(d, α)136Cs Results

I have not failed. I’ve just found 10,000 ways that won’t work.

Thomas A. Edison

The motivation of this experiment was to perform a precision spectroscopy of low-lying

states 136Cs. From this experiment a total of 74 states were observed, up to an excitation

energy of 2.6 MeV. Of these, definite spin parity assignments could be made for 35 strongly

populated states. Spectroscopic factors were obtained for all the states where definite (or

tentative) Jπ assignments could be made.

6.1 Energy Calibration

Due to large Q value of the 138Ba(d, α) reaction, the focal plane detector of the Q3D

spans ∼ 2.5 MeV excitation energy in 136Cs per ‘momentum bite’. Beyond this energy,

the density of states became quite large, given the resolution of the Q3D spectrograph.

Thus, as opposed to the 138Ba(p, t), only one momentum bite was collected per Q3D

angle for this reaction. Since states in 136Cs had not been been studied extensively in the

past, the excitation energy information on this odd-odd nucleus was sparse [129]. Thus,

an external calibration is performed using 92Zr(d, α)90Y and 94Mo(d, α)92Nb reactions by

following the procedure outlined in Section 4.3. The focal plane spectra for 90Y and

92Nb were obtained at the same magnetic settings and under exactly similar experimental

conditions as the 138Ba(d, α) reaction. These particular calibration reactions were chosen

because the Q values of these reactions are very similar to the 138Ba(d, α) reaction, thus

preventing large extrapolations.
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Figure 6.1: Focal plane spectra at θlab = 10◦ for 138Ba(d, α) (bottom), 94Mo(d, α) and 92Zr(d, α)
(top) reactions. The three spectra were obtained with the same field settings. The red labels
(in the top panel) mark the excitation energies (in keV) of 92Nb [149] while black labels mark
well known 90Y states [150]. In the 138Ba(d, α) spectrum, the blue labels are for the previously
known states and all the other peaks are new states identified in this work. Some of the most
prominent ones are labeled in red.
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Figure 6.2: Energy calibration for 138Ba(d, α)136Cs reaction using effective excitation energies
from 92Zr(d, α)90Y and 94Mo(d, α)92Nb.

Table 6.1: Q values for the 138Ba(d, α), 94Mo(d, α) and 92Zr(d, α) reaction [177].

Reaction Q-value (keV)
138Ba(d, α)136Cs 8787.87
94Mo(d, α)92Nb 8750.03

92Zr(d, α)90Y 8745.84

The Q values for these three reactions are compared in Table 6.1 and the focal plane

spectra are shown in Fig. 6.1. Relation between the effective 136Cs excitation energy and

focal plane centroids of the calibration peaks is shown in Fig. 6.2.

6.2 Elastic scattering

As outlined in Section 4.4.1, we chose appropriate optical model parameters (OMPs)

for deuterons and alpha particles by comparing the experimental elastic scattering cross

sections with the DWBA calculations. For the d−138Ba incoming channel, the global

deuteron OMP set of An and Cai [178] yields a minimum χ2 with respect to our data.

This comparison is shown in Fig. 6.3. In the absence of experimental 136Cs(α, α) data,

we used available elastic scattering cross section data on similar mass nuclei, using the
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Figure 6.3: Experimental elastic scattering angular distributions for 22 MeV deuterons on 138Ba,
compared with DWBA cross sections. The global deuteron OMPs used for comparison are An
and Cai [178], Han et al. [179], Bojowald et al. [180] and Perey et al. [181]. The deuteron OMP
that best reproduces the data is the one provided by An and Cai [178].

following procedure. Since the highest energy of the α’s were ∼ 30 MeV, we explored

the Experimental Nuclear Reaction Database (EXFOR) [182] to find the available elastic

scattering cross section data. At similar α energies we found α elastic scattering data

on 136Ba, 140Ce and 130Te target nuclei. For ∼ 30 MeV alphas, one global OMP set by

Avrigeanu et al. [183] and two local OMPs by Burnett et al. [184] and McFadden and

Satchler [185] were available. As the OMP sets of Burnett et al. are optimized for α

scattering on 136Ba they expectedly reproduce our elastic scattering data better than the

other two OMP sets. We additionally compare DWUCK4 angular distributions obtained

using these OMPs with actual 140Ce(α, α) [186] and 130Te(α, α) [187] data. As evident

in Figs. 6.4 and 6.5, the best choice of the α OMP in this region (A = 130 − 140, Eα ∼

30 MeV) is indeed the one suggested by Burnett et al. [184].

Finally, the elastic scattering data were used to obtain the correct target thickness (ρt′)

as described previously in Section 4.4.1. We normalized the data to DWBA predictions

at θcm = 15.2◦, which yielded a normalization factor β = 0.57(2). This translated to ρt′ =
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Figure 6.4: 136Ba(α, α) elastic scattering data obtained from Ref. [184] compared to theoretical
DWBA elastic scattering cross sections obtained using DWUCK4 that used α OMP sets from
Refs. [183–185, 188]. Clearly the α OMP set recommended by Ref. [184] best reproduces the
experimental data.

22.8(1) µg/cm2, where the uncertainty includes both the contribution of the normalization

as well as the differences arising from the choice of deuteron optical model parameters.

6.3 DWBA Calculations

The (d, α) DWBA cross sections were calculated assuming a single step ‘deuteron’ pickup

mechanism, which implies that the transferred neutron-proton pair is in a relative S =

1, T = 0 state [91]. As determined from our deuteron and alpha elastic scattering analysis

in the previous section, the optical model parameters from Refs. [178, 184] were used to

build the interaction potential in the incoming d−138Ba and outgoing α−136Cs channels

in DWUCK4. The deuteron bound state potential was also defined using the OMP of

Ref. [178]. The deuteron cluster form factor is calculated by varying the well depth of the

real volume potential such that the binding energy equals the deuteron separation energy
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Figure 6.5: 140Ce(α, α) (top) and 130Te(α, α) (bottom) elastic scattering data obtained from
Refs. [186, 187] compared with our DWBA calculations using the optical model parameter sets
of Ref [183–185].
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Table 6.2: Optical model parameters for the deuteron, alpha and bound state of the transferred
deuteron cluster used in our DWBA analysis. The deuteron parameters for both the incoming
channel and the bound state are taken from Ref. [178] and alpha parameters are from Ref. [184].

d−138Ba α−136Cs a d−136Cs
Vr 93.385 203.0 – b

rr 1.151 1.40 1.151
ar 0.784 0.570 0.784
Wv 2.472 18.40 – c

rv 1.324 1.40 1.324
av 0.338 0.57 0.338
Ws 10.157 – -
rs 1.363 – 1.363
as 0.851 – 0.851
Vso 3.557 – –
rso 0.972 – 0.972
aso 1.011 – 1.011
rc 1.303 1.40 1.303

FNRG 0.4 0.4 0.4
NLC 0.54 0.2 –

aAs we used a local α OMP, the parameters are constant for all excited states in 136Cs.
bWell depth adjusted to reproduce the BE for deuteron as given by Eq. (6.1).
cWell depth adjusted to reproduce the BE for deuteron as given by Eq. (6.1).

for the corresponding excited state in 136Cs

BE = Sd(
138Ba) + Ex(136Cs), (6.1)

where Sd(
138Ba) is the deuteron separation energy in 138Ba. Since the DWBA calculations

for (d, α) reactions are highly sensitive to the radial integration cutoff limits due to the

momentum mismatch between the α and deuteron, this results in significant contributions

from the nuclear interior, so that, finite-range and non-locality corrections become impor-

tant for the cross section calculations [189–192]. These corrections were implemented in

DWUCK4 and used in the present analysis. The finite range and non-locality correction

factors used for our calculations are shown in Table 6.2.

Angular momentum conservation leads to the selection rule that for each transferred

orbital angular momentum value L, the final spins of the states in 136Cs would be

J = |L− 1| to |L+ 1|. Parity conservation restricts this to J = L for natural par-
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Table 6.3: Relation between allowed Jπ for each L transfer in the 138Ba(d, α)136Cs reaction.
Natural parity states are populated by an J = L transfer while for unnatural parity states both
J = L− 1 and J = L+ 1 transfers are allowed (See text for detailed description).

L Notation Jπ L Notation Jπ

0 S 0+ 1+ 5 H 4− 5− 6−

1 P 0− 1− 2− 6 I 5+ 6+ 7+

2 D 1+ 2+ 3+ 7 J 6− 7− 8−

3 F 2− 3− 4− 8 K 7+ 8+ 9+

4 G 3+ 4+ 5+ 9 L 8− 9− 10−

ity states and J = L ± 1 for unnatural parity states. A brief summary of the results

of this selection for the 138Ba(d, α) reaction is listed in Table 6.3. For the purpose of

book-keeping we use an LJ notation inspired from Ref. [193]. In this notation, an orbital

angular momentum transfer L produces a state with total angular momentum J . For

instance, a Jπ = 2+ state is designated in the LJ notation as D2 while a 2− state can

be designated as P2 or F2 depending on whether the state is populated via an L = 1 or

L = 3 transfer respectively. This notation is further used in Table 6.4. The spin-parity of

each state observed in our measurement is determined based on a χ2
min value determined

from experimental and DWBA cross sections. For the natural parity states, following the

J = L rule, the spectroscopic strength G
(1)
LJ was determined by normalizing the DWBA

calculations to experimental data,

(
dσ

dΩ

)
expt

= G
(1)
LJ

(
dσ

dΩ

)
DWBA:J=L

. (6.2)

For unnatural parity states two L values contribute towards the total angular momen-

tum J . Thus two spectroscopic strengths, G
(1)
LJ and G

(2)
LJ were extracted from a modified

normalization routine

(
dσ

dΩ

)
expt

= G
(1)
LJ

(
dσ

dΩ

)
DWBA:J=L−1

+G
(2)
LJ

(
dσ

dΩ

)
DWBA:J=L+1

. (6.3)

Not surprisingly, for states where the statistics was low, an absolute determination of the

Jπ value was not possible. In such cases, the two most probable spin-parity assignments

based on the smallest χ2 values are quoted in Table 6.4. In certain cases, particularly
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for unnatural parities, one of the L values dominates the angular distribution. If the

J = L angular distribution gives a similar χ2 value, the state was assumed to be a natural

parity state (J = L, π = (−1)L) [194]. The resulting DWBA angular distributions for all

the excited states populated in this work are given in Appendix D and the spectroscopic

strengths are listed in Table 6.4.

Table 6.4: 136Cs states observed in this work. The Ex and Jπ listed in the first two columns are
from the ENSDF database [129]. For natural parity states, as a single L transfer contributes to

Jπ, the G
(1)
LJ is the spectroscopic strength for the J = L transfer. For unnatural parities, G

(1)
LJ is

the strength of the J = L− 1 transfer and G
(2)
LJ is for the J = L+ 1 transfer.

Literature This work

Ex (keV) Jπ Ex (keV) Jπ LJ G
(1)
LJ G

(2)
LJ

0.0 5+ 0 5+ G5I5 1.6(6) 9.3(7)

– – 72(1) 4+ G4 3.9(1)

104.8(3) 4+ 102(1) (4+, 5−)
G4 0.88(3)

H5 0.68(2)

– – 137(1) 3− F3 0.96(4)

– – 308(1) 4+ G4 0.94(3)

– – 418(1) 4+ G4 0.68(2)

– – 454(1) 4+ G4 2.94(6)

517.9(1) 8− 510(1) 8− J8L8 0.29(3) 0.16(6)

590(5) 1+ 582(1) 1+ S1D1 1.0(7) 3.1(2)

– – 632(1) 4+ G4 1.15(4)

– – 651(1) 4+ G4 6.2(1)

– – 664(1) 3− F3 6.3(2)

– – 728(1) (4−, 5−)
F4H4 3.6(6) 5.7(5)

H5 6.4(1)

– – 782(1) 5+ G5I5 0.39(8) 0.6(1)

– – 832(1) 1− P1 3.3(1)

– – 848(1) 5− H5 0.74(3)

– – 884(1) (4+, 5−)
G4 0.70(4)

H5 0.57(3)

– – 901(1) 5− H5 2.61(6)

– – 986(1) 2+ D2 53.8(7)
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Table 6.4 – continued from previous page

Ex (keV) Jπ Ex (keV) Jπ LJ G
(1)
LJ G

(2)
LJ

– – 1033(1) (3+, 3−)
D3G3 1.2(2) 0.9(1)

F3 1.90(7)

– – 1063(1) (5−, 6+)
H5 0.45(2)

I6 0.39(2)

– – 1102(1) (5−, 5+, 6−)

H5 9.2(1)

G5I5 3.2(4) 7.3(5)

H6J6 4.4(3) 5.4(5)

– – 1158(1) 2+ D2 2.1(1)

– – 1186(1) (2+, 3−)
D2 2.2(1)

F3 1.03(5)

– – 1262(1) (2+, 8+)
D2 4.3(3)

K8 2.2(1)

– – 1325(3) 4+ G4 4.15(10)

– – 1353(1) – – –

– – 1412(2) (2+, 3−)
D2 1.9(1)

F3 0.95(6)

– – 1456(1) 4+ G4 0.51(3)

– – 1484(1) 4+ G4 3.23(8)

– – 1511(1) 5− H5 1.39(4)

– – 1530(2) 3+ D3G3 0.8(2) 0.6(2)

– – 1550(1) (4−, 5−)
F4H4 0.6(2) 0.8(2)

H5 0.98(4)

– – 1611(1) (4−, 5−)
F4H4 0.1(3) 1.0(3)

H5 0.84(6)

– – 1639(3) 4+ G4 0.35(5)

– – 1663(1) (4+, 5−)
G4 2.0(1)

H5 1.56(8)

– – 1692(2) 5− H5 0.60(5)

– – 1720(1) 4+ G4 1.51(9)

– – 1741(2) (3+, 3−)
D3G3 1.7(5) 0.8(3)

F3 2.1(1)

– – 1751(1) 4+ G4 2.7(1)

– – 1772(2) 5− H5 0.57(4)
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Table 6.4 – continued from previous page

Ex (keV) Jπ Ex (keV) Jπ LJ G
(1)
LJ G

(2)
LJ

– – 1800(1) 4+ G4 1.05(6)

– – 1811(2) – – – –

– – 1850(2) 4+ G4 0.67(6)

– – 1879(3) 4+ G4 0.55(6)

– – 1899(1) 3− F3 2.3(1)

– – 1928(2) (3−, 4+)
F3 0.90(8)

G4 0.56(5)

– – 1975(1) (4−, 5−)
F4H4 0.4(2) 1.1(2)

H5 1.13(4)

– – 1993(1) (4−, 5−)
F4H4 0.2(2) 1.2(2)

H5 0.99(4)

– – 2012(2) (5−, 6+)
H5 0.38(3)

I6 0.36(3)

– – 2063(2) – – – –

– – 2083(1) 3− F3 1.55(8)

– – 2108(1) (5−, 5+)
H5 5.4(1)

G5I5 4.9(3) 0.4(4)

– – 2118(2) 5− H5 1.51(7)

– – 2155(2) (3−, 4+)
F3 1.21(7)

G4 0.79(5)

– – 2202(2) 3− F3 0.68(7)

– – 2218(1) 3− F3 0.64(7)

– – 2235(1) 3− F3 0.78(7)

– – 2256(1) 3− F3 0.88(6)

– – 2268(2) (3−) F3 0.66(7)

2290(5) 1+ 2290(1) (1+, 2+)
S1D1 0.0 2.7(2)

D2 1.6(1)

– – 2300(5) (2+) D2 1.4(1)

– – 2312(2) – – – –

– – 2331(5) – – – –

– – 2356(1) (3−, 3+)
F3 2.73(9)

D3G3 1.5(3) 1.5(2)

113



Table 6.4 – continued from previous page

Ex (keV) Jπ Ex (keV) Jπ LJ G
(1)
LJ G

(2)
LJ

2360(5) 1+ 2368(2) (1+, 2+)
S1D1 0.5(10) 2.7(4)

D2 1.7(1)

– – 2384(1) – – – –

– – 2408(2) (5+, 5−)
G5I5 0.35(8) 0.1(1)

H5 0.47(4)

– – 2422(5) – – – –

2450(5) 1+ 2451(1) (1+, 2−)
S1D1 3(1) 2.4(4)

P2F2 1.2(5) 0.8(2)

2500(5) 1+ 2502(2) (1−, 1+, 2−)

P1 7.3(7)

S1D1 13(1) 0.0

P2F2 3(1) 0.5(5)

– – 2511(3) (1−, 2+)
P1 8.0(8)

D2 2.6(3)

– – 2536(3) (1−, 2+)
P1 4.3(5)

D2 1.5(2)

2550(5) 1+ 2555(2) (1+, 2+)
S1D1 0.0 5.1(2)

D2 3.0(2)

6.4 Jπ Assignments

On comparing the experimental and DWBA angular distributions we could assign definite

Jπ values for 32 natural and 3 unnatural parity states in 136Cs. For the other 39 states

we only quote tentative Jπ values. For some states where uncertainties on the cross

sections are large, we make tentative assignments for even the most favorable spin-parity

values. As the 136Cs nucleus has not been studied extensively in the past, most of the

information obtained in this work is new. Wherever previous information was available,

it is mentioned in the first two columns of Table 6.4 and in the discussion of the states in

the following sections.
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6.4.1 Natural Parity States

Jπ = 1− states

The angular distribution for the 832 keV state is consistent with a spin-parity assignment

of 1−. This is the only 1− state where we could make a definite Jπ = 1− assignment.

Jπ = 2+ states

2 states are observed at excitation energies of 986 and 1158 keV where a definite Jπ = 2+

assignment could be made. The angular distributions for these states are well reproduced

by DWBA distributions for a J = L = 2 transfer. Both these states are newly identified

in this work.

Jπ = 3− states

A large number of 3− states are observed in this work. The excitation energies for these

states are 137, 664, 1899, 2083, 2202, 2218, 2235 and 2256 keV. None of these states have

been observed previously.

Jπ = 4+ states

We observe a total of 15 states for whom a definite Jπ = 4+ assignment could be made. All

of these states are reported for the first time. The excitation energies for these states are

72, 308, 418, 454, 632, 651, 1325, 1456, 1484, 1639, 1720, 1751, 1800, 1850 and 1879 keV.

Jπ = 5− states

A large number of 5− states are also produced in this reaction. The definite Jπ = 5−

states are 848, 901, 1511, 1692, 1772 and 2118 keV. In addition to these 6 states, numerous

other states are observed, that have been tentatively assigned Jπ = 5−. These states are

discussed in Section 6.4.3.
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6.4.2 Unnatural Parity Assignments

In addition to the 5+ ground state [87,129] and the 8− isomeric state [87,129], we observe

three other unnatural parity states in 136Cs at 582, 782 and 1530 keV. The angular

distribution for 582 keV states agrees with the DWBA prediction for Jπ = 1+. A state

at 590±5 keV was reported in a previous 136Xe(3He, t)136Cs charge exchange reaction as

a Jπ = 1+ state [86]. The DWBA angular distribution for a Jπ = 5+ suitably reproduces

the 782 keV and a Jπ = 3+ describes the 1530 keV state.

6.4.3 Tentative Jπ Assignments

In this section we discuss all states where we could not make definite Jπ assignments.

• Ex = 102 keV This state is reported in the adopted level scheme for 136Cs at an

excitation energy of 104.8 keV as a 4+ state [87]. However, the angular distribution

in this work favors a Jπ = 5− assignment. Hence we make a tentative (4+, 5−)

assignment.

• Ex = 884, 1663 keV The two most probable Jπ values for these states correspond

to the DWBA predictions for 4+ and 5−. Since we cannot make a firm spin-parity

assignment owing to the relatively large uncertainties on the cross sections, we

tentatively assign Jπ = (4+, 5−) for these two states.

• Ex = 1033, 1741, 2356 keV For these three states our χ2 analysis for the angular

distributions indicate Jπ = 3− and 3+. For 1033 and 1741 keV states, the χ2
min

corresponds to Jπ = 3− and for the 2356 keV state Jπ = 3+. Therefore, we assign

Jπ = (3−, 3+) for these three states.

• Ex = 1063, 2012 keV Due to the large uncertainties in cross sections for these

two states, we cannot distinguish between Jπ = 5− and 6+ on the basis of the χ2

values. Hence, we tentatively assign Jπ = (5−, 6+) for these two states.

• Ex = 1102 keV We tentatively assign Jπ = (5−, 5+, 6−) based on the lowest χ2

values for the angular distributions.
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• Ex = 1186, 1412 keV None of these states are listed in the NDS for 136Cs. As

these states are weakly populated, clear distinction cannot be made between the

Jπ = 2+ and 3− angular distributions and hence we tentatively assign Jπ = (2+, 3−)

for these states. For both these states, however, χ2
min corresponds to Jπ = 3−.

• Ex = 1262 keV We could reproduce the angular distribution for this state if we

assume that it is an unresolved doublet, with 66% contribution from an excited

states that is a Jπ = 2+ and 34% from Jπ = 8+.

• Ex = 728, 1550, 1611, 1975, 1993 keV The contribution from L = 3 transfer

towards Jπ = 4− is not negligible as compared to the L = 5 transfer for these states.

Thus we cannot ignore the possibility of Jπ = 4− for these four states. Additionally,

the angular distribution for Jπ = 5− from the L = 5 transfer is also a good fit to

the experimental angular distribution. Hence we tentatively assign Jπ = (4−, 5−)

for these four states.

• Ex = 1928, 2155 keV Due to the large uncertainties in the cross sections, a Jπ =

3− distribution gives a similar χ2 value as a Jπ = 4+ distribution. Thus the two

state are assigned Jπ = (3−, 4+).

• Ex = 2108, 2408 keV Two of the lowest values of χ2 are obtained for the angular

distributions corresponding to Jπ = 5− and 5+ for these two states. Therefore both

these states are tentatively assigned Jπ = (5−, 5+).

• Ex = 2268, 2300 keV While the experimental angular distribution for the 2268 keV

state matches that of Jπ = 3− due to low statistics and an incomplete angular dis-

tribution data set, this state is tentatively assigned Jπ = (3−). For similar reasons,

the state at 2300 keV is also tentatively assigned Jπ = (2+).

• Ex = 2290, 2555 keV The NDS report two levels at 2290 ± 5 and 2550 ± 5 keV

as Jπ = 1+ observed from 136Xe(3He, t)136Cs data [86]. Our DWBA predictions

indicate J = 1+ and 2+ for the two states. However the L = 0 contribution towards
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the Jπ = 1+ distribution is negligible compared to the L = 2 transfer. Hence we

assigned Jπ = (1+, 2+) to these two states.

• Ex = 2368, 2451 keV Two states are reported in the NDS in the vicinity of these

states at 2360±5 and 2450±5 keV [129]. Both the states are reported as Jπ = 1+

observed via the 136Xe(3He, t) charge exchange reaction [86]. We find that the

angular distributions for these states is compatible with 1+ but the possibility of

Jπ = 2− cannot be eliminated for the 2451 keV state and 2+ for the 2368 keV state.

Thus we assign Jπ = (1+, 2+) for 2368 keV and Jπ = (1+, 2−) for 2451 keV.

• Ex = 2511, 2536 keV The DWBA curves assuming Jπ = 1− and 2+ result in

similar χ2 values when normalized to experimental angular distributions. Hence the

two states were assigned Jπ = (1−, 2+).

• Ex = 2502 keV A 1+ state is reported in the NDS [129] at 2500±5 keV observed

in the 136Xe(3He, t) reaction [86]. In this work, however, the angular distributions

is reproduced better assuming Jπ = 1− or 2−. However the large uncertainties also

lead to the possibility of Jπ = 1+. Thus we tentatively assigned Jπ = (1+, 1−, 2−)

for this state.

6.4.4 Indefinite Assignments

Due to large uncertainties and in some cases incomplete angular distributions, no con-

clusive spin-parity assignments could be made for the excited states at 1353, 1811, 2063,

2312, 2331, 2384 and 2422 keV.
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7 Conclusions and Future Work

One never notices what has been done; one can only see what

remains to be done.

Marie Curie

In conclusion, we used the 138Ba(p, t) and 138Ba(d, α) reactions to study properties of the

A = 136 nuclei that are relevant for the 136Xe ββ decays. The 138Ba(p, t) reaction was

performed to study neutron pairing correlations in 136Ba, while the 138Ba(d, α) reaction

was done to perform a high resolution measurement of low lying states in 136Cs. These

experimental information will be useful to constrain future 136Xe→136Ba 0νββ decay

matrix element calculations. A summary of our results is below.

138Ba(p, t)136Ba

In this experiment we identified a total of 110 states in 136Ba up to an excitation energy

of 4.6 MeV. A zero-range DWBA DWUCK4 analysis, assuming a di-neutron cluster pick

up mechanism was carried out to generate theoretical angular distributions. These were

compared with experiment to deduce the spins and parities of various states in 136Ba.

Using this approach we identified 8 new 0+ states in 136Ba. The angular distribution of

all observed 0+ states were well reproduced by the DWBA predictions, except for the first

excited 0+ state at 1579 keV. The discrepancy in the shape of the angular distribution

still remains unresolved. Another 0+ state at 2141.38 keV listed in the Nuclear Data

Sheets was not observed in this work. In addition to the 0+ states, we could also make

definite spin and parity assignments for ∼ 25 newly identified states.
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We observe a large fragmentation of the (p, t) strength for the 0+
2 = 2315 keV and

0+
3 = 2784 keV states. These states are located just above the (∼ 2 MeV) pairing

gap in 136Ba. The combined (p, t) strength to these states relative to the ground state

was found to be ∼ 30%. This is a clear indication of a breakdown in the neutron BCS

approximation for 136Ba. It is interesting to note that a previous (t, p) measurement on

136Ba has shown that the pairing vibrational state in 138Ba lies at 3612 keV [139].

138Ba(d, α)136Cs

A total of 67 new states are observed for the first time in the odd-odd 136Cs nucleus,

below 2.6 MeV. Definite spin and parity assignments could be made for ∼ 35 states. For

the remaining states we made tentative assignments. The analysis was performed using

zero-range DWBA calculations with DWUCK4, assuming a single-step deuteron transfer.

The calculations were corrected for finite-range and non-locality effects. We also obtained

spectroscopic strengths for all states where definite or tentative spin-parities could be

assigned.

Future Work

Our results from the 138Ba(p, t) measurement indicate a breakdown in the BCS approxima-

tion for 136Ba. In the context of 0νββ decays, it is important that QRPA matrix element

calculations take this experimental evidence into consideration. Since both 136Ba and

136Xe have open proton shells, a study of proton pairing correlations in these two nuclei

can also provide useful spectroscopic information for future matrix element calculations.

Additionally, reactions that probe the overlap between the ground state wavefunctions

of the two nuclei would be very useful to constraining the NME calculations. One such

reaction could be the double charge exchange (14C,14O) reaction on 136Ba. Indeed, similar

calculations are currently being pursued by the NUMEN Collaboration [195].

In the immediate future an important first step would be to reproduce our results by tun-
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ing the shell model and QRPA calculations. We are currently working with shell model

theorists to reproduce our experimental results. A similar exercise is recommended for

QRPA calculations as well.

In conclusion, the spectroscopic strengths for the 138Ba(d, α) reaction were extracted as-

suming a single-step transfer of a deuteron in a zero-range approximation with finite-range

and non-locality corrections. It would be advisable to extract these factors using a theo-

retical framework that performs second-order DWBA calculations [196, 197], accounting

for multi-step transfers and finite-range interactions. It has been shown [198, 199] that

the (p, t) reaction cross sections receive a significant contribution from both, the direct

single-step transfer and the two-step sequential transfer when treated under second order

DWBA theory. We therefore intend to perform the sequential 138Ba(d, t)137Ba(t, α)136Cs

and 138Ba(d,3 He) 137Cs(3He, α)136Cs transfer using the DWBA code FRESCO [200]. We

will also do the sequential 138Ba(p, d)137Ba(d, t)136Ba transfer with the two-neutron trans-

fer amplitudes calculated using the shell model code NuShellX [201] for future publica-

tions.
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A Relativistic Kinematics

For the nuclear reaction in direct kinematics

a + A → b + B (A.1)

where a is the projectile, A the target, b the light ejectile and B is the recoil nucleus.

Some of the relativistic kinematic relations used in the C + + code, that follows from the

Oak Ridge National Laboratory’s relativistic kinematics code [202] are discussed below.

For the projectile a with incident energy Ka (= Ebeam) and mass ma, the relativistic

relations between the total energy Ea and the momentum pa or kinetic energy Ka (in the

laboratory frame) are

Ea = Ka +mac
2, (A.2)

and

E2
a = p2

ac
2 +m2

ac
4. (A.3)

Setting c = 1, the minimum kinetic energy required by the projectile to initiate the

reaction is

Kmin =
−Q(ma +mA +mb +mB)

2mA

, (A.4)

where

Q = ma +mA − (mb +mB) (A.5)
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is the reaction Q-value and mA, mb, mB are masses of the target, ejectile and recoiling

nucleus respectively. The total energy (ET ) of the system is

ET = Ea + EA = Eb + EB. (A.6)

In the center-of-mass frame, the total momentum is zero and hence the energy and mo-

mentum relations are given by

ECM
T =

√
ma +m2

A + 2mAEa, (A.7)

pCMa = pCMb =
pamB

ECM
T

, (A.8)

ECM
a =

m2
a +mAEa
ECM
T

, (A.9)

and

ECM
A =

m2
A +mAEa
ECM
T

, (A.10)

In all the equation above and later, quantities without the CM superscript indicate values

in the laboratory frame. For the outgoing nuclei b and B, the energies and momenta are

related to the incoming channel via ECM
T

ECM
T = ECM

b + ECM
B , (A.11)

where

ECM
b =

(ECM
T )2 +m2

b −m2
B

2ECM
T

pCMb =
√

(ECM
b )2 −m2

b

(A.12)

and

ECM
B =

(ECM
T )2 +m2

B −m2
b

2ECM
T

pCMB =
√

(ECM
B )2 −m2

B

(A.13)
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After some algebra, the energy of the ejectile b in the laboratory frame is given in terms

of the masses, energies ET and ECM
T and the laboratory scattering angle θb of the ejectile

Eb =
ET

E2
T − p2

a cos
2θb

(
2mAEa +m2

a +m2
A +m3

b −m2
B

2

)

± pa cosθb
E2
T − p2

a cos
2θb

√(
2mAEa +m2

a +m2
A −m2

b −m2
B

2

)2

−m2
bm

2
B − p2

am
2
b sin

2θb.

(A.14)

The ± sign in Eq. (A.14) indicates two possible solutions for Eb and the physically allowed

solution(s) is decided by the quantity α

α =

(
pa
ET

) (
(ECM

T )2 +m2
b −m2

B

(ECM
T )2

) [(
1−

(
mb +mB

ECM
T

)2
) (

1−
(
mb −mB

ECM
T

)2
)]−1/2

.

(A.15)

If α > 1 both the solutions of Eq.(A.14) are valid for Eb and only the positive solution of

Eq. (A.14) is physical when α < 1. The energy of the recoiling nucleus in the laboratory

frame is then given by

EB = ET − Eb. (A.16)

The momenta for b and B are calculated using the usual energy momentum relation.

In Eq.(A.14), Eb is calculated assuming the recoil nucleus B is in the ground state. To

calculate Eb corresponding to an excited state Ex of B, all the calculations are done using

mB = mB + Ex.

The code is also designed to calculate the excitation energy of the nucleus when the

ejectile kinetic energy (Kb) or momentum (pb) is known. Using the total energy relation

of Eq. (A.6)

Ex = Ea +mA − Eb − EB, (A.17)

where

EB =
√
p2
B +m2

B, (A.18)
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and

pB =
√
p2
a + p2

b − 2papbcosθb. (A.19)

At this stage, pa, pb and θb are known. If instead the ejectile energy Kb is known, pb is

first calculated and then used in Eq. (A.19)

pb =
√

(Kb +mb)2 −m2
3. (A.20)
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B Description of DWUCK4 input file used

for DWBA Analysis

Figure B.1: Sample DWUCK4 input file for L = 3 transfer in 138Ba(p, t)136Ba reaction and
L = 4 in 138Ba(d, α)136Cs. For the purpose of illustration, the various input blocks are labeled.
Description of each block is provided in the text.

The input file for DWUCK4 is divided into seven blocks with character formatting and

spacing following a strict Fortran77 format that specified in the DWUCK4 manual. If this

formatting is not respected, the code crashes. The first four blocks are basic initializations

for the program. Blocks 5 and 6 contain information to construct the distorted waves of

the incoming and outgoing channels while block 7 describe the interactions between the

core nucleus and the transferred particle. A sample input for the (p, t) and (d, α) reactions

is shown in Fig. B.1. The description of each input block is provided below along with

the variable names given in the DWUCK4 manual.

• Input Block 1 - This block is divided into two parts. The first part is a series of 17

‘control flags’ referred to as ICON(i), that initializes the program and decides what

outputs are to be generated or suppressed. The integer 9 at the beginning of the
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input or after Input block 7 will terminate the computation. The second part is a

60 character label that is solely provided for the purpose of identifying the current

calculation. It is written out as is to the DWUCK output file.

• Input Block 2 - The angular range for the DWBA calculation, number of angles

(N ANGLES), minimum angle (ANGLE1) and the angular increment (D ANGLES)

are specified in this block. All angles should be specified in the center-of-mass frame.

• Input Block 3 - In this block the maximum number of partial waves (LMAX)

that are to be used for the calculation, the number of angular momentum transfers

(NLTR) and corresponding to each NLTR, the orbital (LTR(i)) and total (JTR(i))

angular momentum transfer are specified. Multiple angular momentum transfers can

be computed for a given reaction with the options to calculate the cross-sections as

a coherent sum of amplitudes from the different L-transfers.

• Input Block 4 - Five different parameters are specified in this section. These

are, the integration step size (DR), lower (RMIN) and upper (RMAX) cut-offs for

the radial integrals, Coulomb excitation scale factor (COUEX) and the finite-range

correction (FNRNG) factors.

• Input Block 5 - This is a multi-line input block that requires information about

the initial conditions of the incoming channel and the optical model parameters to

calculate the distorted waves. The first line reads in the energy of the incoming

beam (E), the masses in amu and charges for the projectile and target (MP, ZP,

MT, ZT), the charge radius of the projectile (r0c) as determined from the optical

model potential, a non-locality correction factor (PNLOC) and two times the spin

of the projectile (2*FS). The optical potential is constructed by ‘stacking’ several

individual potentials corresponding to the various forms given by the variable OP-

TION as specified in Eq. (4.25). The negative sign in front of OPTION (in this

case, 2.0) alerts the code that the current potential is the last one for the input

block. The parameters of the optical potential correspond to the global optical

model parameters that are selected by following the procedure in Sect. 4.4.1.
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• Input Block 6 - This block is the same as input block 5 except that the distorted

waves are constructed for the outgoing channel and instead of the beam energy the

reaction Q-value for the excited state is entered.

• Input Block 7 - This block describes interaction between the transferred particle(s)

and the core nucleus. The input structure of this block varies depending on the

reaction model. The underlying difference in the inputs in this block for the (d, α)

and (p, t) reactions is that we calculate the two-nucleon transfer form factor for

(p, t) using ICON(2)=2 and a single particle transfer form factor for (d, α) using

ICON(2)=0. Specifics for the two reactions are further elaborated below.

– The input file for (p, t) reaction is designed for an L = 3 transfer. To construct

a negative state in a (p, t) reactions requires that the two neutrons should be

picked up from two different orbitals, one with positive and other with negative

parity. This is accomplished by setting CONTROL=2 (on line 13) which means

that DWUCK4 will read different inputs for the two neutrons. This input line

is not defined for the (d, α) reaction.

– The next three (six) lines define the core-transferred particle interaction. This

includes the OMP parameters for the deuteron (neutron), the binding energies

and the single particle orbitals for the d and 2n pickup. The binding energies

used here are defined in Eq. (5.1) and (6.1) for (p, t) and (d, α) respectively.

For the (p, t) reaction, the single particle orbitals reflect the shell model states

in 138Ba for the 2n pick up while for the (d, α) input it reflects the state of the

transferred deuteron. When FISW=0 (in both the inputs) DWUCK4 will vary

the well-depth of the core-transferred particle potential and keep the binding

energy fixed.

DWUCK4 output by default is written to screen but can be diverted into a text file with

a simple terminal command,

./dwuck4 dwuck.inp > dwuck.out
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The first few lines of the output writes out the content of the input file along with

the computed quantities for the distorted waves. This enables the user to perform any

diagnostic tests. This is followed by the elastic scattering cross sections and a paper

plot if requested by the user via the control flags. The next set of output is for the

reaction channel also referred to as the inelastic channel. The cross-sections are output as

a function of angle, along with the vector and tensor analyzing power. As the DWUCK4

cross sections are output in fm2/sr, these values have to be multiplied by a factor of 10 to

compare it with experimental cross-sections that are obtained in mb/sr. A paper plot for

the reaction cross-sections with respect to center-of-mass angles are also output depending

on the values of the control flags.
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C
138Ba(p, t)136Ba Angular distributions

Angular distribution for the various states populated in the 138Ba(p, t)136Ba reaction are

plotted along with the DWBA curves from DWUCK4 for these states. The proton optical

model parameter set by Varner [156] and triton optical model parameter set by Li, Liang

and Cai [159] are used for the DWBA curves. All the DWBA angular distribution are

color coded and the experimental data points are plotted as solid black circles.
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D
138Ba(d, α)136Cs Angular distributions

In this Appendix we show all the experimental and DWBA angular distributions for the

states populated in the 138Ba(d, α)136Cs reaction. All natural parity states here are shown

as discontinues lines while the unnatural parity states are full solid lines. The deuteron

optical model parameter set by An and Cai [178] and alpha optical model parameter set

by Burnett et al. [184] are used in DWUCK4 [93].
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[138] M. Gerçeklioğlu, “Transfer strengths to the 0+ states excited by (p, t) reactions in

130,132,134Ba,” Phys. Rev. C, vol. 82, p. 024306, Aug 2010.

[139] E. Flynn, J. Cizewski, R. E. Brown, and J. Sunier, “136,138Ba(t, p) and the sys-

tematics of neutron pairing vibrations at N = 82,” Physics Letters B, vol. 98, no. 3,

pp. 166 – 168, 1981.

166



[140] W. Alford et al., “The (3He, n) reaction on N = 82 targets and even isotopes of

neodymium,” Nuclear Physics A, vol. 321, no. 1, pp. 45 – 61, 1979.

[141] R. Hertenberger et al., “The Stern-Gerlach polarized ion source for the Munich

MP-tandem laboratory, a bright source for unpolarized hydrogen and helium ion

beams as well,” Nuclear Instruments and Methods in Physics Research Section A:

Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 536, no. 3,

pp. 266 – 272, 2005.
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