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Abstract

Observation of neutrinoless double beta decay (0νββ) is currently the only

means by which one could establish the Majorana nature of neutrinos. Ad-

ditionally, such an observation would determine the absolute neutrino mass

scale. However, this requires that the matrix element for a given 0νββ decay

process is accurately calculated. The objective of this project is to provide

useful nuclear structure information that aim to improve future theoretical

calculations for the nuclear matrix element (NME) of 136Xe 0νββ decay to

136Ba. We studied neutron pairing correlations in 134Ba using the 136Ba(p, t)

reaction to stringently test the Bardeen-Cooper-Schrieffer (BCS) approxima-

tion in the A = 136 mass region. This is because many theoretical calcu-

lations of the NME’s for 0νββ decay are performed using the quasiparticle

random phase approximation (QRPA), which uses the BCS approximation

to describe the ground states of the even-even parent and daughter nuclei.

Our results show a significant fragmentation of the neutron-pair transfer to

excited 0+ states, implying a breakdown of the BCS approximation in this

mass region.
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Chapter 1

Introduction

1.1 Standard Model of Particle Physics

The standard model (SM) of particle physics describes the constituents of

matter at the most fundamental level [1]. It unifies the electromagnetic,

strong and weak interactions, and classifies elementary particles in three

fermion generations of quarks and leptons as shown in Fig. 1.1 and below: u

d

 ,

 c

s

 ,

 t

b

 quarks (1.1)

 νe

e

 ,

 νµ

µ

 ,

 ντ

τ

 leptons (1.2)

The quarks interact through the strong, electromagnetic and weak interac-

tions, whereas the leptons interact through the electromagnetic and weak

interactions. These interactions are mediated by spin-1 bosons, which are

photons for the electromagnetic interaction, the W± and Z0 bosons for weak

2
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Figure 1.1: Classification of elementary particles and their interactions

according to the standard model. Figure taken from Ref.[2].

interactions and gluons for the strong interaction. The photons and glu-

ons are massless bosons, whereas the W± and Z0 bosons are highly massive

(MW± ∼ 80 GeV, MZ0 ∼ 90 GeV). The large masses of the weak interaction

bosons is explained by the symmetry-breaking field associated with a Higgs

boson [3]. Although the SM has been very successful so that experimental

data matched theoretical predictions, there are still various arguments that

lead to the undoubtable conclusion that the SM is not a complete theory de-

scribing the fundamental particles and their interactions. For example, the

SM assumed neutrinos to be massless. However the observation of neutrino

oscillations imply that they must have mass. Today it is accepted that neu-

trinos are very light neutral leptons listed in the top row of Eq. (1.2) that
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only interact with matter via weak interactions (if one ignores gravity). Be-

low I describe some salient aspects of neutrino physics and weak interaction

theory relevant for this work.

1.2 A brief history

In the early years it was assumed that a nuclear beta decay was a two-

body kinematics problem. However, the experimentally measured energy

distribution for electrons (positrons) from a given decay showed a continuous

energy spectrum (Fig. 1.2).

Figure 1.2: Energy distribution of electrons and positrons observed during

beta decays. Figure taken from Ref. [4].

The continuous spectra shown in Fig. 1.2 could only be interpreted as non-
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conservation of energy and momentum or a missing particle. To account

for fundamental conservation laws, Pauli postulated in 1932 the existence

of an extremely light spin-1/2 neutral particle which was not detected as it

interact very weakly with matter. He called the missing particle a neutron.

Later Fermi presented a more rigorous theory for beta decays using a current-

current interaction [3] and called the new particle a neutrino (little neutral

one in Italian).

1.3 Lepton number conservation

In 1946 Bruno Pontecorvo proposed the radiochemical method for neutrino

detection, which was based on the observation of processes such as

νe + n −→ p+ e−. (1.3)

Indeed this process was measured by the famous Homestake measurement [5,

6] in which solar neutrinos from fusion reactions in the sun were detected

using the reaction

νe + 37Cl −→ 37Ar + e−. (1.4)

During the same time other experiments that used nuclear reactors as a

source of neutrinos did not observe a similar process. However the Reines

and Cowan experiment [7] did successfully observe a process of the type

νe + p −→ n+ e+, (1.5)

from nuclear reactors. This clearly indicated that the neutrinos from reactors

were not the same as neutrinos from the sun and led to the definition of lepton
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number to label the neutrinos, so that the reactor neutrinos were actually

anti-neutrinos, with lepton number L = −1. Therefore, the observed process

in the Reines-Cowan experiment was

ν̄e + p −→ n+ e+. (1.6)

In summary, experimental evidence shows that the processes

n+ νe −→ p+ e− (1.7)

and

p+ ν̄e −→ n+ e+ (1.8)

are allowed (observed), while the processes

n+ ν̄e −→ p+ e− (1.9)

and

p+ νe −→ n+ e+ (1.10)

are forbidden (not observed). This leads to the conservation rule for lepton

number, so that lepton number for particles is +1 and for antiparticles it is

−1.

The neutrinos emitted from beta decays are therefore labeled as

n −→ p+ e− + ν̄e (1.11)

and

p −→ n+ e+ + νe. (1.12)
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The above clearly shows that (based on experimental evidence alone) neutri-

nos and anti-neutrinos ought to be distinct from one another (or are Dirac

particles). However, this picture describing neutrino charge-conjugation prop-

erties is not based on any fundamental physical principles. A ν̄e and νe can

still be indistinguishable as they are both electrically neutral spin 1/2 ele-

mentary fermions. This possibility was put forth in 1937 by Ettore Majorana

and would result in neutrinoless double beta decay (0νββ), represented by,

2n −→ 2p+ 2e−. (1.13)

This 0νββ process (discussed further in Section 1.5) would violate lepton

number number conservation by two units due to the absence of anti-neutrinos.

However such a decay is ruled out for massless neutrinos due to the phe-

nomenon of parity violation in weak interactions, that was both proposed

and experimentally observed in the 1950’s. I briefly describe the symmetry

properties of the parity (space-reflection) operator and its associated conser-

vation law below.

1.4 Parity violation in weak interactions

Parity is also known as mirror or left-right symmetry, as the parity operator P

results in a spatial inversion about the origin, so that the operator transforms

the sign of true vectors (x, y, z) −→ (−x,−y,−z) while leaving axial-vectors

unchanged [3].

For example, a parity transformation on an angular momentum vector (an
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axial vector) ~L = ~r × ~p leads to

P ~L = ~L. (1.14)

From the above one can clearly see that the eigenvalues of P are either +1 or

−1. Parity symmetry leads to a multiplicative conservation law. Therefore, if

a composite system is made of two non-interacting sub systems with parities

π1 and π2, then the parity π of the combined system is the product

π = π1π2. (1.15)

So, if parity were conserved, then all physical processes would occur with no

distinction of left and right. In fact, parity is conserved in electromagnetic

and strong interactions, but violated maximally in weak interactions. His-

torically, parity conservation was under question with the famous tau-theta

puzzle [1]. Two particles, the τ and the θ appeared to be identical in every

way (with same mass, spin, charge, etc.), yet they decayed via two different

modes

θ+ −→ π+ + π0 (1.16)

and

τ+ −→ π+ + π+ + π−. (1.17)

One can clearly see from the above that the reaction products in the two

decays have opposite parity, based on the multiplicative conservation rule in

Eq. (1.15). It was a puzzle that the two particles can be identical in every

respect, expect with opposite parities in their decay products. This paradox
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was resolved by Lee and Yang who postulated that parity was violated in

weak interactions and that the two particles were in fact the same parti-

cle (called a kaon) [8].

In 1956, Wu and Ambler et al. [9] performed a ground breaking experiment

to observe parity violation in nuclear β decays. The experiment used samples

of 60Co placed in a strong magnetic field, so that they were polarized along

the axis of the ~B field. 60Co decays via the β− decay mode to 60Ni, which

de-excites to its ground state by emitting two gamma rays,

60Co −→ 60Ni + e− + ν̄e + 2γ. (1.18)

Since electromagnetic interactions conserve parity, the distribution of emitted

gamma rays was used to check the polarization of the emitted electrons with

respect to the oriented nuclear spin. By comparing the distribution of the

gamma rays and the emitted electrons when the 60Co nuclei are polarized

in (say) the positive ẑ direction to when they are polarized in the negative ẑ

direction, Wu and collaborators found that about 60% of gamma rays were

emitted in one direction, while ∼ 40% were emitted in the other. In contrast

the electrons were always emitted preferentially in a direction opposite to that

of the 60Co spin [9]. This implied that parity is violated in weak interactions.

A schematic representation of the experiment is illustrated in Fig. 1.3.

The Wu experiment was followed by another elegant experiment by Gold-

haber, Grodzins and Sunyar [11] who experimentally determined the helicity

of neutrinos (described below). They used the electron capture decay of
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Figure 1.3: Observed electron angular distributions when the nucleus is

polarized along positive z-axis (left side), and when the nucleus is polarized

in the negative z-axis (right side). Figure taken from Ref. [10]

152Eum

152Eum + e− −→ 152Sm∗ + νe (1.19)

which leaves 152Sm in an excited state that makes a transition to the ground

state and emits a γ-ray.

152Sm∗ −→ 152Sm + γ. (1.20)

Let us assume that the neutrino is emitted towards the right, along the

z axis so that the recoil of the nucleus is towards the left. Goldhaber et

al. experiment showed that the γ-rays from the decay were always right-

circularly polarized (Fig. 1.4).

Since both 152Eum and 152Sm have spin 0 in their ground state, the change

in angular momentum by the whole process is ∆J =1/2, which must be car-

ried away by the photon and the neutrino. On choosing the quantization
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Figure 1.4: Schematic representation of Goldhaber et al. experiment.

axis to be along the direction of the γ-ray, it is clear that the projections of

the spins (or magnetic substates) of the photon, the neutrino and the cap-

tured electron along the ẑ direction should be either mγ = +1, mνe = −1/2

and me = −1/2, or mγ = −1, mνe = +1/2 and me = +1/2. The right

circular polarization of the γ-ray shows that mγ = −1, which implies that

mνe = +1/2. The selectivity of the experiment ensured that the momen-

tum of the neutrino was always opposite to that of the γ-ray for the data

that were recorded. One can then define the helicity of a neutrino as the

projection of its intrinsic spin along the direction of its momentum. Clearly,

since the neutrinos are in an opposite direction to the γ-rays and mνe can

only be = +1/2, the experiment shows that neutrinos have helicity h = −1

or are left-handed. In other words, the direction of neutrino’s spin is always

opposite to its momentum. This is the concept of a helicity eigenstate = -1.

Since neutrinos are nearly massless fermions that move at relativistic speeds,

they are best described by the Dirac equation, which clearly shows that the

existence of anti-particles are an essential requirement to explain its nega-
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tive energy solutions [1]. Further, if one defines a charge conjugation op-

erator that converts particles to anti-particles, it naturally follows that a

charge-conjugated left-handed fermion field is converted to a right-handed

field [1]. Thus, anti-neutrinos should have (positive) helicity h = 1 or are

right-handed (or momentum and intrinsic spin pointing in the same direc-

tion).

The above experiments show that massless neutrinos (or anti-neutrinos) car-

ried an additional label of handedness (or helicity). This forbids neutrinoless

double beta decay processes shown in Eq. (1.13) due to “helicity suppres-

sion”, which can be explained as follows. Assume the 0νββ decay shown in

Eq. (1.13) can be represented by two simultaneous β decays through virtual

states, so that the first neutrino is absorbed by a neutron in the nuclear

medium to produce a second electron (assuming that the neutrino is Majo-

rana particle or νe ≡ ν̄e).

Then, the 0νββ decay process (Eq. (1.13)) is forbidden for massless Majo-

rana neutrinos because the neutrino that is emitted and then reabsorbed

is required to have opposite helicities for the two processes (section 1.3).

Therefore, if parity were maximally violated and only left-handed massless

neutrinos (and right handed anti-neutrinos) exist in nature, then 0νββ decays

of the type shown in Eq. (1.13) would be impossible.

1.5 Massive neutrinos and 0νββ decays

Although since their discovery, neutrinos were assumed to be massless par-

ticles, this was proved to be not the case in the late 20th century. It was
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first predicted by Pontecorvo in 1957 that if neutrinos had mass they would

undergo a quantum mechanical phenomenon called neutrino oscillations,

whereby a neutrino with a specific flavor (electron neutrino νe, tau neu-

trino ντ , or muon neutrino νµ) would change to a different flavor after a

certain flight time [12]. Indeed, neutrino oscillation experiments such as

Super-Kamiokande [13], SNO [14], GALLEX [15] etc., revealed that neutri-

nos do oscillate from one type to another. Thus they ought to be non-zero

mass particles. Additionally the three neutrino flavors (νe, ντ , νµ) are not

expected to have the same mass. The eigenstates of flavor are related to the

mass eigenstates via the transformation


νe

νµ

ντ

 =


Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3



ν1

ν2

ν3

 , (1.21)

where the 3×3 matrix is called the Pontecorvo-Maki-Nakagwa-Sakata (PMNS)

neutrino mixing matrix [12]. The probability that a neutrino changes flavor

να −→ νβ is given by [16],

Pα−→β = δαβ − 4
∑
i>j

Re
[
UβiU

∗
αiU

∗
βjUαj

]
sin2

[
(m2

j −m2
i )L

4E

]

− 2
∑
i>j

Im
[
U∗αiUβiUαjU

∗
βj

]
sin

[
(m2

j −m2
i )L

2E

]
.

(1.22)

In other words, neutrino oscillation experiments only determine neutrino

mass squared differences and not absolute masses. One method to determine

the absolute neutrino mass scale is described below.
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1.5.1 Double beta decays in atomic nuclei

Unlike the decay shown in Eq. (1.13), two neutrino double beta decays (2νββ)

of the type

2n −→ 2p+ 2e− + 2ν̄e (1.23)

are allowed to occur in nuclei where the nuclear pairing force forbids single β

decays. One such example is relevant for this thesis and is shown in Fig 1.5,

where 136Xe double beta decays to 136Ba via a second-order weak process.

Figure 1.5: Mass parabola for A = 136 isobars. Although 136Xe cannot β

decay to 136Cs, ββ decays to 136Ba are allowed. Figure taken from Ref [17].

Clearly, from the mass parabola shown above, single beta decays from 136Xe

to 136Cs are energetically forbidden. As mentioned previously, the 2νββ de-



CHAPTER 1. INTRODUCTION 15

cay process is allowed in the SM as it conserves lepton number . This process

is very rare and have been observed in several isotopes, with long lifetimes

ranging between 1019 − 1022 years.

Since now neutrinos are known to possess mass, their description using a

helicity operator is not appropriate any more, as helicity is not Lorentz in-

variant for massive particles. If some new (unknown) physics mechanism

allows a Lorentz transformation that changes the sign of a neutrino’s helic-

ity, 0νββ decays of the type shown in Eq. (1.13) would be allowed. Most

theories that aim to go beyond the standard model incorporate this effect for

massive neutrinos and require a violation of lepton number by 2 units. How-

ever 0νββ decays are expected to be highly suppressed due to the smallness

of neutrino masses. The Feynman diagrams for both the SM allowed 2νββ

decay and the SM forbidden 0νββ decay are shown in Fig 1.6.

Figure 1.6: Left panel: 2νββ decay. Right panel: 0νββ decay.

If one assumes the dominant mechanism driving a 0νββ decay is the exchange
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of light Majorana neutrinos, the measured decay rate will be

(
T 0ν

1/2

)−1
= G0ν(Q,Z)|M0ν |2

(
〈mββ〉
me

)2

, (1.24)

where G0ν(Q,Z) is a phase space factor, me is the electron mass, M0ν is

the nuclear matrix element (NME) for the decay and mββ is the effective

Majorana mass of the electron neutrino. For three neutrino flavors,

mββ =
3∑
i=1

miU
2
ei, (1.25)

where the Uei are elements of the PMNS neutrino mixing matrix described

previously. Therefore, one can determine the effective Majorana mass of an

electron neutrino from a measured 0νββ decay rate. However this requires

that the NME for the decay is evaluated accurately. This aspect has al-

ways proved to be very challenging. Current theoretical calculations report

NME values with significant disagreements depending on the nuclear model

used (Fig. 1.7). Below I provide a brief discussion on the two main theoretical

models used for calculations of NMEs for 0νββ candidates. I place emphasis

on the current status of 136Xe −→ 136Ba 0νββ decay, which is relevant for

this work.

1.5.2 0νββ Nuclear Matrix Elements

The theoretical models currently used to evaluate nuclear matrix elements of

0νββ decay candidates include the quasiparticle random phase approxima-

tion (QRPA) [18], interacting shell model (ISM) [19], projected Hartree-Fock

Bogoluibov (P-HBF) method [20], interacting boson model (IBM) [21] and
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energy density functional method (EDF) [22]. Below I briefly discuss the

QRPA and the ISM, which are two of the most commonly used approaches

to evaluate the NMEs.

Figure 1.7: Calculated NMEs for several 0νββ decay candidates using dif-

ferent theoretical approaches. Figure taken from Ref [23].

Interacting Shell Model (ISM)

Within the shell model each nucleon in an atomic nucleus experiences an av-

erage potential due to the other nucleons. The nucleons occupy eigenstates

labeled by quantum numbers nlj, similarly as the wavefunctions of individual

electrons in atoms. The shell model explains very accurately several proper-

ties of nuclei with specific number of protons Z and number of neutrons N

= (A− Z) called “magic numbers” (2, 8, 20, 28, 50, 82, 126). For example,
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nuclei in which the number of protons and the number of neutrons are equal

to magic numbers are called closed shell nuclei. Such nuclei have a much

higher binding energy compared to their neighbours, analogous to noble gas

atoms that have their electronic shells completely filled.

The shell model nuclear Hamiltonian is expressed as a sum of independent-

particle Hamiltonians Ĥ0 and a residual interaction V̂ [24],

Ĥ = Ĥ0 + V̂ . (1.26)

Here Ĥ0 is the summed single-particle Hamiltonian

Ĥ0 =
A∑
i=1

ĥi, (1.27)

where ĥi represents the Hamiltonian of the ith nucleon. The single-particle

motion of ith nucleon in an average central potential U(ri) is

ĥi =
p̂2
i

2M
+ U(ri), (1.28)

where p̂i = −i~∇i is the momentum of the ith nucleon [24].

To obtain solutions to the Schrödinger equation for the Hamiltonian Ĥ, one

needs an appropriate potential describing the short-range nuclear force. Al-

though the square-well and the spherical harmonic oscillator potentials in

principle provide single-particle wavefunctions in analytic form, these are

not good approximations of the nuclear potential. The square-well potential

for example requires an infinite amount of energy to take out a nucleon from

the well, and the harmonic oscillator potential tends to infinity at large r. A
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reasonable potential is the Woods-Saxon potential defined by [24]

U(r) = −V0

[
1 + exp

(
r −R
a

)]−1

(1.29)

where R = 1.25A1/3 fm , a = 0.524 fm is the half distance and V0 ' 50 MeV.

Figure 1.8 shows a comparison between harmonic oscillator potential (HO)

and the Woods-Saxon potential (WS).

Figure 1.8: Single-particle shell model potentials. Figure taken from

Ref. [25].

Although the Woods-Saxon potential seems realistic, it is not sufficient by

itself to describe experimental data adequately. One needs to take into con-

sideration the spin-orbit coupling Vso~l · ~s, where ~l is the orbital angular mo-
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mentum and ~s is the intrinsic spin of a nucleon. Since,

j2 = (~l + ~s)2 = l2 + s2 + 2~l · ~s, (1.30)

the spin-orbit coupling is described by the operators

~l · ~s =
1

2
(j2 − l2 − s2), (1.31)

whose expectation value is

〈~l · ~s〉 =
1

2
[j(j + 1)− l(l + 1)− s(s+ 1)] . (1.32)

Since s = 1/2, we have two possible values of total angular momentum for

a given nucleon, j = l + 1/2 and j = l − 1/2, with energies -1
2
l~2 and -

1
2
(l+ 1)~2 respectively. The spin-orbit coupling leads to the energy splitting

so that the higher j have lower energy and reproduces all the magic num-

bers showing an explicit shell structure (Fig. 1.9). The shell model describes

nuclear properties using a valence space in which active nucleons occupy a

few single-particle states outside an inert core (the Fermi surface). Within

this limited valence space, the full configuration interaction eigenstates and

eigenvalues are obtained by diagonalizing the Hamiltonian for the many body

nuclear wavefunctions. However, this model works best for reasonably lighter

nuclei. Current computational capabilities allow arbitrarily complex corre-

lations within the valence nucleons to perform state-of-the-art calculation of

nuclear observables.

In the shell model calculations for 136Xe 0νββ decay, the valence space is

limited to magic numbers 50 and 82 (shown in Fig. 1.9) for the protons and
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neutrons. This restricts the calculations to only the (0g7/2, 1d5/2, 1d3/2, 2s1/2,

0h11/2) orbitals. The two-body decay operators are [19]

M̂0ν =
∑
j

(∑
i,j,k,l

MJ
i,j,k,l

[
(a†ia

†
j)
J(akal)

0
])

=
∑
Jπ

P̂ †Jπ P̂Jπ ,

(1.33)

where the P̂ operators annihilate pairs of neutrons and P̂ † operators create

pairs of protons coupled to the same spin and parity Jπ. The dominant

contribution to the NME is found to be from J = 0 pairs, while the J > 0

couplings mainly cancel this term [19].

Quasiparticle Random Phase Approximation (QRPA)

Unlike the ISM, the QRPA calculations use a large valence space, but with re-

stricted configurations for the valence nucleons [18]. One of the main approxi-

mations used in the QRPA calculations is the Bardeen-Cooper-Schrieffer (BCS)

approximation for pairing between like nucleons. The BCS theory assumes

the formation of Cooper pairs for the neutrons and protons similar to bound

state electron pairs in a superconductor [24].

Assuming a weak pairing interaction between the identical nucleons, similar

to the BCS theory of electrons [24], the nucleons occupy states in time-

reversed orbits ψjm and ψj−m. The nuclear many body system can be ex-

pressed similarly as electrons, as an antisymmetrized product function, given

by a Slater determinant. The occupancy of each state is treated statistically,

using the second quantization formalism. The pairing interaction is given



CHAPTER 1. INTRODUCTION 22

Figure 1.9: Single-particle levels obtained with the harmonic oscillator po-

tential (HO), Woods-Saxon potential (WS) and Woods-Saxon plus spin-orbit

coupling (WS+LS). Figure taken from Ref [26].

by [27]

Vpair = −G
∑
mm′

a†jma
†
jm̄ajm̄′ajm, (1.34)

where

a†jm |0〉 = ψjm (1.35)

and

a†jm̄ |0〉 = (−)j−mψj−m. (1.36)

In the above, G represents the strength of the pairing interaction and a† and
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a are creation and annihilation operators operating on the vacuum state |0〉.

The ground state BCS wavefunction is then [27]

ψG =
∏
ν

(Uν + Vνa
†
νa
†
ν̄) |0〉 (1.37)

for paired states |jm〉 and |jm̄〉, which are labeled as ν amd ν̄. The Uν and

Vν coefficients are the amplitudes for the occupation probabilities of a state

|ν〉 for a pair of nucleons. If we choose |Vν |2 to be the probability that a

paired state is occupied, then |Uν |2 = 1 - |Vν |2 is the probability that it is not

occupied. If one defines Uν = sin θν and Vν = cos θν , then the normalization

condition U2
ν + V 2

ν = 1 is satisfied. The other constraint is from the total

nucleon number n, defined so that

2
∑
ν

|Vν |2 = n. (1.38)

One can then use the ground state energy minimum using a variational

method to solve for Vν and Uν

∂WBCS

∂θν
= 0, (1.39)

where one can define

ξν = (εν − EF ), (1.40)

εν being the single particle energy where, εk = ~2k2
2m

, and ξν represents the

energy above the Fermi surface. The variational result yields (for the ground

state) [27]

V 2
ν =

1

2

[
1− ξν

(∆2 + ξ2
ν)

1/2

]
, (1.41)
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and

U2
ν =

1

2

[
1 +

ξν
(∆2 + ξ2

ν)
1/2

]
, (1.42)

where

Eν =
√

∆2 + ξ2
ν (1.43)

and ∆ is the minimum excitation energy or the pairing gap

∆ = G
∑
ν

UνVν . (1.44)

The QRPA many body calculations of 0νββ decay matrix elements allow the

use of a much larger configuration space compared to the ISM, but with fewer

correlations. A similar cancellation between J = 0 and J > 0 pairs of the

NME has been observed in the QRPA calculations as well. Importantly, in

the QRPA calculations, nucleon pairing is treated separately using the BCS

approximation [28]. Furthermore, the calculations mostly assume spherical

ground states for the parent and daughter nuclei, which need not be the case.

This aspect is further discussed in the conclusion section of chapter 4.

1.5.3 Current experimental status of 136Xe−→136Ba 0ν2β

decay

Currently there are several experiments ongoing to search for neutrinoless

double beta decays. Some of these include KamLAND-ZEN [29], EXO-

200 [30], CUORE [31], Majorana Demonstrator [32], GERDA [33] and CUPID-

0 [34]. Below I describe briefly the KamLAND-Zen and EXO-200 exper-

iments, which aim to observe the 0ν2ββ decay of 136Xe. As mentioned
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previously, this candidate is relevant for this thesis and has the following

advantages over other 0νββ decay experiments.

• 136Xe is relatively abundant (8.9%), affordable and easy to purify.

• The liquid or gaseous Xe can be used as a time projection cham-

ber (TPC). This allows for maximal background rejection using the

method of barium ion tagging [35].

• 136Xe is singly closed shell with N = 82 and Z = 54. So the matrix

element calculations for its 0νββ decay are expected to be relatively

easier.

• Its standard model allowed 2νββ decay background is highly sup-

pressed, with a measured value of its matrix element being M2ν ≈ 0.02

MeV−1 [36]. As shown in Fig. 1.10, this means that large background

structure on the left will be significantly diminished for this case.

It is due to the above advantages that the most sensitive limit explicitly ob-

tained to date for mββ is from a 136Xe ββ decay experiment with KamLAND-

Zen (described below), with mββ ≤ 61-165 meV [29], depending on the choice

of the matrix element for the decay.

The EXO-200 experiment

EXO-200 is a cylindrical homogeneous time projection chamber (TPC), which

uses ∼ 81% enriched 136Xe as both source and the detector [38]. This detec-

tor is designed to minimize radioactive backgrounds, use maximally enriched

liquid Xe, and provide good energy resolution at the Q-value of ∼ 2.4 MeV.
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Figure 1.10: Comparison of the expected signals for 0νββ and 2νββ decays,

as shown in Ref. [37]

The cylindrical part is divided in two symmetrical volumes separated by a

cathode grid. A schematic of the EXO-200 detector is shown in Fig. 1.11.

The KamLAND-ZEN experiment

The KamLAND-ZEN detector stands for Kamioka Liquid Scintillator An-

tineutrino detector. It uses ∼ 400 kgs of 136Xe enriched to 90%, dissolved

in a liquid scintillator (made of mineral oil, benzene, and fluorescent chem-

icals). The scintillator fills inside an inner balloon located at the center of

the detector [39]. The 13 m diameter outer balloon of the detector comprises

a spherical tank that contains ∼ 1 kton of ultra-pure liquid scintillator ma-

terial, which provides shielding from external radiation. A schematic of the
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Figure 1.11: Schematic view of the EXO-200 detector. Figure taken from

Ref. [38].

KamLAND-ZEN detector is shown in Fig. 1.12.
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Figure 1.12: Schematic of the kamLAND-ZEN detector. Figure taken from

Ref. [39].

After giving the necessary background of this work, let us get to the heart

of this thesis. In the next chapter, I provide a discussion on direct nuclear

reactions and I emphasize on the (p, t) reaction, which provides useful nuclear

structure information relevant for the NME of 0νββ.



Chapter 2

Direct nuclear reactions

The study of nuclear reactions plays an important role in nuclear physics as

almost all properties of nuclei need to be measured using scattering, where

in target nuclei are bombarded by particles from an accelerator or a radioac-

tive substance1. It was Rutherford’s experiment with α-particles scattering

on a gold foil that provided experimental evidence of an atomic nucleus. In

general, nuclear reactions can be classified in three different types, direct,

pre-equilibrium, and compound reactions. These reaction mechanisms differ

depending on the interaction time scales and the number of nucleons involved

in the interaction between the incident particle and the target nucleus.

Direct reactions are said to occur when the projectile interacts with very few

target nucleons, and the interaction occurs at very short time scales (10−21-

10−22s). Direct reactions are generally useful to probe the shell effects in

atomic nuclei, since they are selective to specific states resulting from the

1In fact, even nuclear decays are described by a formalism that is very similar to

scattering processes.

29
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addition or removal of nucleons to (or from) a given orbital. Direct reactions

allow one to extract information regarding the overlap between the wave

functions of the target nucleus and the ground or particular excited states

in the residual nucleus with the employment of simple models [40]. There

are many types of direct reactions such as elastic scattering, inelastic scat-

tering, nucleon transfer reactions, break-up reactions and charge-exchange

reactions. Each of these reaction channels may be opened in a given ex-

periment, depending on the specific beam energy. On the other hand, in a

compound reaction, the interaction time-scale between the projectile and the

target is much longer (≈ 10−18s), and the reaction proceeds through many

collisions before particle (or photon) emission. In such reactions, the projec-

tile is captured by the target and its entire energy is distributed between the

nucleons leading to the formation of a compound nucleus. The compound

nucleus is usually formed in an excited state and can evaporate one or more

particles (or lead to fission), etc. The de-excitation to the final products only

depends on the energy, angular momentum and parity of the quantum state

of the compound nucleus.

Finally, pre-equilibrium reactions are reaction mechanisms between direct

and compound reaction processes. These reactions can be interpreted as

multi-step direct reactions, so that particle emission occurs before the sta-

tistical equilibrium of the compound nuclear state is reached. In general,

all three reaction types can occur with different probabilities. I shall spend

much of this chapter discussing direct reactions, since this work employed a

two-neutron transfer (p, t) reaction.
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2.1 Scattering Theory

Reaction cross sections can be evaluated by solving the Schrödinger equa-

tion for a scattering process, given an interaction potential. This section

provides a discussion on theoretical expressions for differential cross sections

as a function of scattering angles. We start with the simplest description

of a differential cross section in terms of the number of particles scattered

and incident particles. We then introduce quantum mechanical approaches

to derive an expression of differential cross sections in terms of scattering

amplitudes of reaction outcomes, each outcome being described by its own

set of partial-waves.

2.1.1 Differential Cross Section

Consider a collision experiment (figure 2.2) which involves measuring the

number of scattered events in an element of solid angle dΩ in direction (θ,

φ). If the incident flux of particles jinc is defined as the number of particles

per unit time crossing a unit area normal to direction of incidence, then the

number of particles per unit time scattered into an element of dΩ is (jscatdΩ)

proportional to the incident flux. The differential cross section can be defined

as the ratio of the scattered flux (jscat) to the incident flux (jinc) [41].

dσ

dΩ
=
jscat
jinc

(2.1)

The scattered flux jscat is in units of number of particles per steradian per

second. Thus, the differential scattering cross section dσ
dΩ

is in units of area

per steradian. If a detector subtends a surface A, and is placed at distance R
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Figure 2.1: Scattering of a beam of particles into a solid angle Ω.

from the target, the total solid angle covered is ∆Ω ' A/R2. One can obtain

the total cross section by integrating the differential cross section over all dΩ,

σ =

∫
dσ

dΩ
dΩ. (2.2)

A convenient unit of cross section is the barn (b), 1b = 10−28 m2 = 100 fm2.

2.1.2 Quantum mechanical theory of scattering

The Schrödinger equation for a central force scattering problem is given by[
− ~

2µ
∇2 + V (r)

]
ψ(r) = Eψ(r) (2.3)

where E is the total kinetic energy in the CM frame, µ = m1m2

m1+m2
is the

reduced mass of the two particles, V (r) is the potential that depends on the
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distance of the particles and r = |~r1 − ~r2|, where ~r1 and ~r2 represent vector

positions of the projectile and target respectively.

If the incoming projectile has well defined energy, the incident wave function

can be assumed to be a plane wave, with wave number ~k, given by

ψinc(~r) = ei
~k·~r. (2.4)

The scattered wave function is obtained assuming that the interaction poten-

tial V (r) is isotropic and short-ranged (falls faster than 1/r). The outgoing

waves are spherical with wave number ~k′, expressed by [41]

ψscat(~r) = f(θ, φ)
ei
~k′·~r

r
. (2.5)

The general asymptotic wave function outside the interaction region, is a

superposition of incident plane waves and scattered spherical waves,

ψ(~r) = ψinc + ψscat = ei
~k·~r + f(θ, φ)

ei
~k′·~r

r
. (2.6)

In the above, the scattering amplitude f(θ, φ), depends on the internal struc-

ture of the particles involved and can be expanded into a set of partial waves.

f(θ, φ) =
1

2ik

∞∑
l=0

(2l + 1)( e2iδl(k) − 1)Pl(cos θ), (2.7)

where Pl(cos θ) are Legendre polynomials and δl(k) are the phase shifts.

The particle flux associated with ψ can be described as the probability current

density, given by

~j = Re

{
ψ∗
(
−i~
µ
∇
)
ψ

}
. (2.8)
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Therefore, using Eqs.(2.4) and (2.8), the incident flux can be rewritten as

ji =
~k
µ
. (2.9)

Similarly, Eqs.(2.5) and (2.8) show that the scattered flux can be expressed

as

jscat =
~k′

µ

|f(θ, φ)|2

r2
+O(1/r3), (2.10)

expressed in paticles/area/second. In order to account for the solid angle

coverage of the detector, the initial expression of the scattered flux must be

integrated over a surface of a sphere, so that the scattered flux in terms of

steradian/second is

jscat =
~k′

µ

|f(θ, φ)|2

r2
+O(1/r), (2.11)

where the higher-order term O(1/r) is neglected because it vanishes when r

is very large.

The differential cross section can now be determined by substituting Eqs. (2.11)

and (2.9) in Eq. (2.1)

dσ

dΩ
=
k′

k
|f(θ, φ)|2, (2.12)

where k =
√

2µE/~. In the case of elastic scattering, since there is no change

of energy (momentum), k = k′. The cross section is then simply reduced to

dσ

dΩ
= |f(θ, φ)|2 = |f(θ)|2 (2.13)

where the φ dependence redundant on account of the spherical symmetry.
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In general, for an inelastic process, where the initial and final reduced masses

are not necessarily equal, the differential cross section is expressed as

(
dσ

dΩ

)
i→f

=
µiµf

(2π~)2

(
kf
ki

)
|Tif |2, (2.14)

where Tif is the transition amplitude (or matrix element) between the ini-

tial (incident) and final (outgoing) channels.

2.1.3 Elastic Scattering

In general, the scattering potential in nuclei has contributions from both

the short-range attractive nuclear potential and the long-range repulsive

Coulomb potential.

For pure Coulomb interaction between the projectile with charge Zp and

target with charge Zt, the potential is simply

VC(r) =
ZpZte

2

r
, (2.15)

where r is the relative distance between the projectile and target nuclei. To

simplify the problem, it is common to introduce a dimensionless Sommerfield

parameter η, given by

η =
ZpZte

2µ

~2k
=
ZpZte

2µ

~

( µ

2E

) 1
2
, (2.16)

with µ being the reduced mass and E = ~2k2
2µ

is the energy of relative mo-

tion. The scattering amplitude can be expanded for this Coulomb interaction
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similarly as in Eq. (2.7)

fC(θ, φ) =
1

2ik

∞∑
l=0

(2l + 1)( e2iδCl (η) − 1)Pl(cos θ), (2.17)

where δCl (η) is the Coulomb phase shift. Since the Coulomb potential does

not go to zero fast enough for large r and the phase shift δCl (η) is always

non-zero, this series expression does not converge. In order for the series to

have a physical meaning, a screened Coulomb potential is used instead. The

point-source Coulomb scattering amplitude is defined so that the screened

radius tends to infinity [41]. The asymptotic amplitude for such Coulomb

scattering is given by

fC(θ) = − η

2k sin2(θ/2)
e(−iη ln(sin2(θ/2))+2iδC0 (η)), (2.18)

so that the point-source Coulomb scattering differential cross section is

dσ

dΩ

∣∣∣∣
c

= |fc(θ)|2 =
η2

4k2 sin4(θ/2)
, (2.19)

the Rutherford scattering cross section.

If the beam energy is sufficiently above the Coulomb barrier, the interaction

will include both the nuclear potential and the Coulomb potential,

V (r) = VC(r) + VN(r), (2.20)

so that the total phase shift for scattering off V (r) will be composed of both

Coulomb δCl (η) and nuclear δNl phase shifts,

δl = δCl (η) + δNl . (2.21)
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The scattering amplitude is naturally the sum of Coulomb and nuclear am-

plitudes,

fNC(θ) = fC(θ) + fN(θ). (2.22)

The fN(θ) also includes the effects of Coulomb distortion on the nuclear

potential, so that [41],

fN(θ) =
1

2ik

∞∑
l=0

(2l + 1) e2iδCl (η)( e2iδNl (η) − 1)Pl(cos θ). (2.23)

Therefore, the differential cross section for a combination of Coulomb and

nuclear scattering is

dσ

dΩ

∣∣∣∣
NC

= |fNC(θ)|2 = |fN(θ) + fC(θ)|2. (2.24)

2.2 The Distorted-Wave Born Approximation

Because of the complexity in solving the Schrödinger equation for a scatter-

ing in Coulomb and nuclear potential, some approximations need to be taken

into account in order to evaluate transition matrix elements. The Born ap-

proximation is a useful tool to simplify the calculation of the transition ampli-

tudes between the initial and final systems. Assuming that reaction procees

A(a, b)B is caused by an interaction potential V , the transition amplitude

between two channels (entrance and exit) can be calculated using an ap-

proximation known as the distorted-wave Born approximation (DWBA)[42].

This approximation is the most useful one in the direct nuclear reaction the-

ory and remains valid as long as the interaction potential is sufficiently weak.
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The transition amplitude for the reaction A(a, b)B under the DWBA is given

as

TDWBA =

∫
d3rbd

3raχ
(−)(
−→
k f ,
−→r b)∗〈ψBψb|V |ψAψa〉χ(+)(

−→
k i,
−→r a), (2.25)

where χ(−) and χ(+) are the distorted waves, −→r a and −→r b are the relative

coordinates for the initial system (a,A) and final system (b,B), respectively.

The quantity 〈ψBψb|V |ψAψa〉 is the nuclear matrix element and can be as

series expansion in terms of spherical harmonics [43],

〈ψBψb|V |ψAψa〉 =
∑
L,M

flY
M
L (θ, φ). (2.26)

The distorted waves χ±(
−→
k ,−→r ) asymptotically describe a plane wave of wave

vector
−→
k plus an outgoing (or incoming) spherical scattered wave, which in

the case of a 1/r potential has the form [44],

χ±(
−→
k ,−→r ) = ei

−→
k −→r + f(θ)

e±i
−→
k −→r

r
. (2.27)

The distorted waves which has an incoming and outgoing spherical waves are

connected by [44],

χ(−)∗(
−→
k ,−→r ) = χ(+)(−

−→
k ,−→r ). (2.28)

2.3 Optical Model Potential

We saw in Section 2.2 how in a direct nuclear reaction the initial and final

systems are connected via an interaction potential. This potential is not
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explicitly defined for the case of the nucleon-nucleus interaction. Due to the

complexity of the many-body system in the nucleus, the interaction between

each nucleon of the projectile and each nucleon of the target can be described

in term of an average potential U(r) experienced by a single nucleon with

the rest of the nucleus. This approximation results in an optical model

potential (OMP), which by definition has two components

U(r) = V (r) + iW (r), (2.29)

where V (r) represents the real part of the potential and W (r) represents

the imaginary part of the potential, which takes into account the absorp-

tion effects. The optical model potential only considers the relative motion

within a reaction channel. The appropriate OMP is thus determined by an

adjustment of its parameters to the experimental data. The optical poten-

tial is composed of three parts: the volume part, the surface part, and the

spin-orbit part of interaction. The Coulomb term is also taken into account

in the case of charged projectiles. Therefore, the optical potential is the sum

U(r) = −Vvfv(r, Rv, av)− iWvfw(r, Rw, aw)

+ i4Wsas
d

dr
fs(r, Rs, as)

+ λ2
π

(Vso + iWso)

r

d

dr
fso(r, Rso, aso)~σ·~l

+ VC(r),

(2.30)

where λπ is the pion Compton wavelength, λ2
π ≈ 2. In the above the Woods-
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Saxon form factor is defined as

f(r, Ri, ai) =

[
1 + exp

(r −Ri)

ai

]−1

. (2.31)

This factor takes into consideration that the nuclear density is almost con-

stant in the interior of the nucleus (r < R) and falls smoothly to zero outside

for r > R [42]. The Vi, Wi, and ri terms are the parameters to be deter-

mined by fitting the DWBA predictions to elastic scattering data. In the

above Ri = riA
1/3 is the radius of the nucleus and ai is the diffuseness of the

potential. The Coulomb potential between the projectile with charge Zp and

target with charge Zt is given by

VC(r) =


ZpZte2

2R

(
3− r2

R2

)
, r ≤ R,

ZpZte2

r
, r > R

(2.32)

where R is the nuclear charge radius, R = rcA
1/3.

2.4 Two-Body Nuclear Reaction Kinematics

In this section I discuss the kinematics of the two-body nuclear reactions

with light projectiles (p, n, d, t, or α). The interaction produces an ejectile,

which is a scattered projectile-like particle, and a recoil, which is a target-like

nucleus. Generally, the central goal of the reaction is to analyze the ejectile

distribution and use that to probe the nuclear structure of the recoiling nu-

cleus.

The general notation used to describe such a nuclear reaction is:

a+ A −→ B + b. (2.33)
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Another shorthand way to denote the nuclear reaction is A(a, b)B. In the

above, a is the projectile, A is the target, B is the recoil, and b is the ejectile.

The reaction presented in this thesis is

p+ 136Ba −→ 134Ba + t (2.34)

also shown as 136Ba(p, t)134Ba.

Figure 2.2: A graphic representation of two-body kinematics for the reaction

136Ba(p, t) in the laboratory coordinate system (left side) and the center-of-

mass coordinate sytem (right side).

Below I derive the kinematics for a two body reaction.

Consider m1, m2, m3, and m4 the rest masses of projectile, target, ejectile,

and recoil nuclei, respectively. Momentum conservation leads to the equa-

tions,

p1 = p3 cos θ + p4 cosφ (2.35)
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0 = p3 sin θ − p4 sinφ. (2.36)

Similarly, energy conservation can be written as

E1 +m2c
2 +Q = E3 + E4 + Ex = Etot + Ex (2.37)

where E = T + mc2 and E2 = p2c2 + m2c4. T represents the kinetic energy

and E is the total energy (kinetic + rest-mass energy). The reaction Q-value

is defined as Q = [m1 +m2 − (m3 +m4)] c2, and the laboratory scattering

angles of ejectile are determined from experiment.

The minimum kinetic energy required by the projectile so that the reaction

proceeds is the threshold kinetic energy Wth = − Q
2m2

(m1+m2+m3+m4) [45].

Squaring Eq (2.35) and Eq (2.36), we get

(p1 − p3 cos θ)2 = p2
4 cos2 φ (2.38)

p2
3 sin2 θ = p2

4 sin2 φ. (2.39)

Summing Eq (2.38) and Eq (2.39) results in

p2
1c

2 + p2
3c

2 − 2p1p3c
2 cos θ = p4c

2, (2.40)

while substituting p2
4c

2 = (Etot − E3)2 −m2
4c

4 into Eq (2.40) leads to

p2
1c

2 +p2
3c

2−2p1p3c
2 cos θ = (Etot − E3)2−m2

4c
4 = E2

tot+E2
3−2EtotE3−m2

4c
4

(2.41)
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⇒ p2
1c

2 + E2
3 −m2

3c
4 − 2p1p3c

2 cos θ +m2
4c

4 − E2
3 = E2

tot − 2EtotE3 (2.42)

⇒ 2p1p3c
2 cos θ = (m2

4c
4 −m2

3c
4) + p2

1c
2 + 2EtotE3 − E2

tot. (2.43)

Squaring Eq (2.43), one obtains

4(E2
3−m2

3)(p1c)
2 cos2 θ =

[
(m2

4c
4 −m2

3c
4) + p2

1c
2 + 2EtotE3 − E2

tot

]2
. (2.44)

Further grouping the terms of Eq (2.44), one obtains the quadratic equation

for E3

(4p2
1c

2 cos2 θ − 4E2
tot)E

2
3 +

(
4E3

tot + 4Etotp
2
1c

2 + 4m2
3c

4Etot − 4m2
4c

4Etot
)
E3

+ 2p1c
2E2

tot − 2m2
3c

4E2
tot + 2m2

3c
4p2

1c
2 + 2m2

4c
4E2

tot − 2m2
4c

4p2
1c

2 + 2m3c
4m2

4c
4

− E4
tot − p4

1c
4 −m4

3c
8 −m4

4c
8 − 4m2

3c
4p2

1c
2 cos2 θ = 0.

(2.45)

This equation can be trivally solved so that once the laboratory energy

of ejectile is known, the remaining quantities can be easily determined [45],

T3 = E3 −m3c
2 (2.46)

p3 =
1

c

(
E2

3 −m2
3c

4
)1/2

(2.47)

E4 = Etot − E3 (2.48)
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T4 = E4 −m4c
2 (2.49)

p4 =
1

c

(
E2

4 −m2
4c

4
)1/2

(2.50)

φ = arcsin

(
p3

p4
sin θ

)
. (2.51)

The kinematic equations in the centre-of-mass frame are similarly,

E ′tot =
(
m2

1c
4 +m2

2c
4 + 2m2c

2E1

)1/2
(2.52)

p′1 = p′2 =
p1m2c

2

E ′tot
(2.53)

E ′1 =
m2

1c
4 +m2c

2E1

E ′tot
(2.54)

E ′2 =
m2

2c
4 +m2c

2E1

E ′tot
(2.55)

E ′3 =
E ′2tot +m2

3c
4 −m2

4c
4

2E ′tot
(2.56)

E ′4 =
E ′2tot +m2

4c
4 −m2

3c
4

2E ′tot
(2.57)

p′3 =
1

c

(
E ′23 −m2

3c
4
)1/2

(2.58)

p′4 =
1

c

(
E ′24 −m2

4c
4
)1/2

(2.59)
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θ′ = arcsin

(
p3

p′3
sin θ

)
(2.60)

φ′ = 180◦ − θ′ (2.61)

2.5 Two-nucleon transfer reactions

Two-nucleon transfer reactions occur when a pair of nucleons is added (or

removed) to or from the target nucleus during the reaction. The pair of

transferred nucleons that is transferred can be either composed of two like-

nucleons or one proton and one neutron, then the reaction cross sections

depend on the correlations between the transferred nucleons from various

orbitals. Since this thesis describes the two neutron transfer 136Ba(p, t) reac-

tion, below I discuss briefly two-neutron transfer reactions and their relevance

for the study of pairing in nuclei.

Particle-particle pairing correlations between nucleons play an important role

in the structural considerations for atomic nuclei. In particular the pairing

forces between nucleons are an important constituent in the residual part

of the nucleon-nucleon interaction described in section 1.5.2. Two nucleon

transfer reactions such as the (t, p), (p, t) and (3He,n) reactions are important

probes of pairing correlations in nuclei. If one assumes the two transfered

nucleons are in a relative L = 0 (s-wave) state, then the L = 0 orbital angu-

lar momentum transfer strength to 0+ states in the residual nucleus would

test the BCS approximation used in QRPA calculations. For fully coherently

paired system of like nucleons the BCS theory is valid and the nucleons can
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be assumed to be in a superfluid state of paired bosons. In such a scenario

one would expect significant strength connecting the 0+ ground states of the

target and residual nuclei [46]. However, a large breakdowns of this approx-

imation (from the superfluid limit) can occur due to the onset of a shell gap

or changes in deformation between the initial and final state nuclei. Such a

scenario would require a reassessment of the BCS approximation in QRPA

calculations. Below I discuss the selection rules for the (p, t) reaction in this

context.

In a (p, t) reaction, if the total orbital and spin angular momenta of the

two transferred neutrons are J1, L1, S1, and J2, L2, S2 respectively, the al-

lowed angular momentum values for a two nucleon transfer reaction will be

as follows

JR = JT + L+ S = JT + J, (2.62)

so that

|JT − JR| ≤ J ≤ JT + JR. (2.63)

In the above, JT and JR are the angular momenta of the target and residual

nucleus respectively, and J is the total angular momentum transferred by

the two nucleons. Let us discuss the (p, t) reaction on an angular momentum

Jπ = 0+ even-even nucleus which is relevant for this thesis. Since the two

neutrons picked up mainly couple to S = 0 as it is the more energetically

favorable configuration. Therefore, the selection rule for (p, t) reaction on an
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even-even nucleus (with Jπ = 0+) results in

JR = L. (2.64)

The multiplicative conservation rule of parity shown in Eq. (1.15) will further

result in

πRπT = (−1)L. (2.65)

L = JR, only natural parity states (0+, 1−, 2+, 3− etc) would be populated in

such reactions. In the following experimental and analysis chapters I discuss

the procedures that we employed to perform the spectroscopy of states in

134Ba, using a 136Ba(p, t) two neutron transfer reaction.



Chapter 3

Experimental Setup and Data

Analysis

In this chapter I describe the experimental apparatus and the data analy-

sis methods used to both obtain and analyse the 136Ba(p, t) data. For the

purpose of this experiment, a 2µA 22 MeV proton beam was incident on a

40 µg/cm2 136BaO target that was isotopically enriched to 93% and evapo-

rated on a carbon foil which had a thickness of 30 µg/cm2. A more detailed

description is below.

3.1 Experimental Setup

3.1.1 Facility

The experiment was performed at the Maier Leibnitz Laboratory (MLL),

located on the joint campuses of the Ludwig-Maximilian Universität (LMU)

48
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and Technische Universität München (TUM) in Garching, Germany. The

MLL has a 14 MV Tandem Van de Graaff accelerator which can provide

polarized and unpolarized stable light ion beams (Fig. 3.1).

Figure 3.1: A photograph of the tandem hall at MLL, showing the tandem

Van de Graaff accelerator (orange) and the 90◦ analyzing magnet (blue).

3.1.2 Ion source

The Stern-Gerlach negative ion source at MLL (shown in Fig. 3.2) is a source

that uses the electron cyclotron resonance (ECR) method of ionization. The

negative ion beams are obtained using the ionization process in two steps. In

the first step, the hydrogen atoms are singly ionized within the ECR plasma,

resulting in positively charged H+ ions. This single electron stripping process

has an efficiency of a few percent. In the second step, the hydrogen ions

pass through cesium vapour where they pick up two electrons, resulting in

negatively charged H− ions. The efficiency of the second step is about 30%.
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The ion source generates high-intensity unpolarized H− beams which are then

directed towards the tandem accelerator.

Figure 3.2: Scheme of the Stern-Gerlach ion source at MLL, figure taken

from Ref. [47].

3.1.3 Tandem Van de Graff accelearator

The tandem accelerates charged ions in two stages by using a single terminal

high voltage. The H− ions are first towards the positive high-voltage (HV)

terminal at the center of the tank. At the center of the tandem tank, they

pass through a thin carbon stripping foil, that strips off the electrons mak-

ing positively H+ ions. The resulting ions are thus accelerated away from

the central positive potential, providing a second stage of acceleration. Af-

ter exiting the accelerator, the ions are steered by a 90◦ analyzing magnet
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that directs them towards the Q3D hall. The trajectories of the ions are

determined by

R = Bρ =
mv

q
, (3.1)

where B, ρ, mv, and q are the magnetic field, the gyroradius of the particle,

the momentum of particle, and the charge of particle respectively. The an-

alyzing magnet selects a specific energy of the beam to be sent to the Q3D.

To control the energy of the beam, a feedback system is set up right after

the analyzing magnet. The system is made of a pair of slits that reads the

currents on both the left and the right slit. If the beam energy is lower or

higher than required, the system will read more current on one compared to

the other and the voltage is then adjusted to correct the beam energy. This

combination results in a very stable beam with an energy spread of ∆E/E

≤ 10−4. A schematic view of the different stages of tandem acceleration is

shown in Fig. 3.3 .

Figure 3.3: Schematic picture of a tandem Van de Graaff accelerator.
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3.1.4 Q3D Magnetic Spectrograph

The Q3D is a high resolution magnetic spectrograph, composed of three

dipole magnets, a quadrupole magnet and a multipole magnet. The dipole

magnets deflect light charged ejectiles from reactions such as 136Ba(p, t) and

they provide a way to do rigidity selection, while the quadrupole magnet is

used to provide vertical focus onto the focal plane. The radius of the charged

particle in the magnetic field is given by Eq (3.1). A computer program is

used to set the desired value of magnetic field according to the reaction and

measurement angles. The spectrograph sits on a semi-circular iron rail which

allows it to be rotated to different laboratory angles relative to the beam axis.

A schematic of the Q3D magnetic spectrograph is shown in Fig. 3.4 and a

picture in Fig. 3.5.

Figure 3.4: The Q3D magnetic spectrograph, illustrating the trajectory of

a light charged ejectile to the focal plane.
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Figure 3.5: The Q3D vault at MLL.

3.1.5 Focal plane detector

The focal plane detector of the spectrograph is comprised of two proportional

counters and a plastic scintillator. Each proportional counter is filled with

isobutane gas at ∼ 500 mbar. The first proportional counter comprises of two

cathode foils and a single anode wire at the center. The second proportional

counter is made of one cathode foil, one cathode-strip foil and two anode

wires positioned such that one is vertically above the other to ensure that

the number of events on each wire is approximately the same. The cathode-

strip foil is composed of 272 strips, each 3 mm wide and separated by 0.5

mm, which precisely determine the positions of the ejectiles along the focal

plane.

The 7 mm thick plastic scintillator is coupled to photo-multiplier tubes
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(PMTs), which convert the light from scintillator into electrical pulses.

When the charged ejectiles travel inside the two proportional counters, they

lose energy by ionizing the gas. The free electrons caused by this ioniza-

tion move towards the anode wire, so that the electric field around the an-

ode gives the electrons enough energy to create further electron-ion pairs.

An electron avalanche is consequently induced close to the wire. The total

amount of charge collected on the wire in the first counter is proportional to

the energy lost ∆E1. A similar process occurs for the second counter. The

positive charge resulting from the avalanche hit the cathode-strip foil. This

contributes an event that is registered by the data acquisition system. A

schematic view of the detector is shown in Fig. 3.6.

Figure 3.6: Schematic diagram of the focal plane detector at the Q3D spec-

trograph as shown in Ref. [48].
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3.2 Data Analysis

The data presented in this thesis were collected using five momentum settings

for the spectrograph, ranging up to an excitation energy of 3.4 MeV. The

laboratory scattering angle was varied between 5◦ and 60◦ in increments 5◦

over the course of the experiment.

3.2.1 Particle identification

Since multiple 136Ba+p nuclear reaction channels open up in the experiment

and the focal plane detector would detect all charged ejectiles within the

regidity acceptance, in order to ensure that we collect data only from the

reaction of interest, specific particle identification (PID) gates are required

for analyzing the data. In most Q3D experiments, two PID gates are set.

The first gate is set by comparing the energy lost (∆E1 vs ∆E2) in the two

proportional counters. The second gate is set by comparing the energy lost

in the second proportional counter with the energy deposited on the plastic

scintillator (∆E2 vs E). The 2-dimensional histograms showing both these

PID gates for the 136Ba(p, t) reaction are shown in Fig 3.7.

3.2.2 Peak fitting

Each triton peak within the spectrum represents a state populated in the re-

coil nucleus and the number of counts under a peak represents the probability

for populating that nuclear state. We used a Levenberg-Marquardt [49] χ2

minimization method to perform the peak fitting to extract peak centroids

and areas. The lineshape function used to fit the peaks was the convolution
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Figure 3.7: Left panel: particle identification, ∆E1-∆E2 plot showing the

partial energy loss of ejectiles in the two proportional counters. Right panel:

∆E2-E plot showing the ejectiles’ energy loss in the second proportional

counter and total energy deposited on the plastic scintillator.

of a Gaussian with a low energy exponential tail, on a flat background [50].

The low energy tail is necessary to take into account the energy straggling

of the ejectiles through the target material and the focal plane detector.

3.2.3 Energy calibration

We first identified the triton peaks corresponding to excited states in 134Ba

using a very rough energy calibration. Once identified, the momentum for

each triton group was calculated using Eq (2.47) in Section 2.4. Since the

focal plane of the Q3D spectrograph is curved, we used a quadratic relation

between the momentum (P ) and centroid of the peak on the focal plane (x).

P (x) = (A+Bx+ Cx2). (3.2)
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Table 3.1: Polynomial fit parameters for the energy calibration in each mo-

mentum setting.

Fitting Parameters MB1 MB2 MB3 MB4 MB5

A 273.372 266.525 258.426 250.095 241.482

B 0.0138061 0.0175375 0.0170596 0.0167728 0.0156578

C -3.58x10−6 -3.54x10−6 -3.64x10−6 -3.06x10−6

Here A, B and C are the coefficients obtained for each momentum setting.

We used a modified χ2 description to account for uncertainties in both the x

and y coordinates [51], so that

χ2 =
N∑
i=1

[yi − yfit(xi)]2(
σ2
yi

+ σ2
xi

dyfit(xi)2

dx

) . (3.3)

In the above, the coordinates (x, y) represent the focal plane centroids and

momenta, and (σx, σy) represent their associated uncertainties. The min-

imization was performed using ROOT program [52] and the MINUIT li-

brary [53] to obtain the coefficients of Eq (3.2). The resulting coefficients

are listed in Table 3.1, for all momentum settings used in this experiment.

These coefficients were used to convert focal plane centroids to triton mo-

menta. The corresponding excitation energies were then back calculated

using the reaction kinematics described in Section 2.4.

3.2.4 Uncertainties in excitation energy calculations

In addition to the statistical uncertainties, systematic uncertainties also con-

tribute to add to the total uncertainty in extracted excitation energies. The
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first contribution arises from the uncertainty in beam energy (∆E/E ≤ 10−4).

The second comes from the uncertainty in masses of the nuclei involved in

the reaction, and the last one1 is due to the angular acceptance of the Q3D

as a function of X-slit width. The uncertainty (∆θ) due to the angular

acceptance of the Q3D is

∆θ = tan−1

(
∆X

R

)
, (3.4)

where R is the distance from the the aperture to the target chamber. The

total uncertainties in the excitation energies are then added in quadrature so

that

∆Ex =
√

(∆Estat)2 + (∆Ebeam)2 + (∆Emass)2 + (∆EQ3D)2 (3.5)

where ∆Estat, ∆Ebeam, ∆Emass, and ∆EQ3D are the uncertainties due to

statistics, beam energy, nuclear masses, and the Q3D angular acceptance.

3.2.5 Cross section determination

The measured laboratory differential scattering cross section was determined

using the formula

(
dσ

dΩ

)
lab

=
Nc

NtNbΩLTDAQLTDET
.1034

[
mb

sr

]
, (3.6)

where Nc is the number of counts in a given peak, Nb is the number of beam

particles incident on the target, Ω is the solid angle acceptance of Q3D,

1To the lowest order, uncertainties due to the target thickness can be ignored as well

known states in 134Ba were used as an intrinsic calibration.
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LTDAQ and LTDET are corrections due to the live-times associated to the

DAQ and detector, and Nt is the number of target nuclei. The number of

136Ba nuclei in the target were determined from elastic scattering data as

discussed in Section 3.2.7.

The cross sections were determined at different Q3D angles, and the angular

distributions were obtained for the purpose of comparison between theoret-

ical DWBA predictions and experimental data. Since the theoretical cross

sections are calculated in the centre-of-mass frame, a transformation from lab

frame to the centre-of-mass frame for both the angles and the ( dσ
dΩ

) values

was necessary.

3.2.6 Laboratory to centre-of-mass (CM) frame trans-

formations

Since our experiment was performed with a proton beam energy of 22 MeV,

non-relativistic equations can be applied for the transformation from the

laboratory frame to the CM frame. The position of centre-of mass is given

by

~Rcm =
m1~r1 +m2~r2

M
(3.7)

where m1, m2 are described in Section 2.4, ~r1, ~r2 are the positions of projectile

and target respectively and the total mass is M = m1+m2. In the laboratory

frame, the projectile velocity is
−→
V1, and the target is at rest. From Eq. (3.7),
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the centre-of-mass velocity is simply

~vcm =
m1

m1 +m2

~V1. (3.8)

Referring to Fig 2.2 in Section 2.4, one obtains

~V3 = ~v3 + ~vcm. (3.9)

Therefore by making projections into parallel and perpendicular components

along the beam direction, one obtains

V3 sin θlab = v3 sin θcm (3.10)

V3 cos θlab = v3 cos θcm + vcm. (3.11)

From Eq. (3.10) and Eq. (3.11), one can get the relationships

tan θlab =
sin θcm

cos θcm + vcm/v3

=
sin θcm

cos θcm + γ
(3.12)

and

cos θlab =
γ + cos θcm√

1 + γ2 + 2γ cos θcm
. (3.13)

Furthermore, the relationship between the centre of mass angle and the lab-

oratory angle is given by [54]

θcm = sin−1 (γ sin(θlab)) + θlab, (3.14)
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where

γ ≈

√√√√m1m3

m2m4

(
1

1 + (1 + m1

m2
)Q
E

)
. (3.15)

Eq. (3.15) is obtained assuming that the sum of projectile and target nuclear

mass in the initial state is equal to the sum of the ejectile and recoil nuclear

mass in the final state. Here, E is the laboratory energy of the incident

particle, and Q is the reaction Q-value corresponding to the specific excited

state. It assumed that the Q-value is negligible compared to the total mass

of the initial state. Finally, one obtains

dσ

dΩcm

=
dσ

dΩlab

dΩlab

dΩcm

, (3.16)

dΩlab

dΩcm

=
d(cos θlab)

d(cos θcm)
. (3.17)

From the above, the relationship between the centre of mass cross section

and the laboratory cross section is given by [54]

(
dσ

dΩ

)
cm

=

(
dσ

dΩ

)
lab

(
1 + γ cos θcm

(1 + 2γ cos θcm + γ2)
3
2

)
. (3.18)

3.2.7 Elastic scattering

The elastic scattering data from our experiment served two purposes. The

first was to select the best optical model parameters (OMPs) for the DWBA

calculations. The second was to determine the correct number of 136Ba nuclei

in the target Nt.
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Selecting the appropriate optical model parameters

To trust the reliability of the OMP sets for the entrance channel of the (p, t)

reaction, we compared the experimental 136Ba(p, p) cross sections (as a ratio

to Rutherford cross sections) with the DWBA predictions using different

global OMPs. The ratio to Rutherford cross sections is used instead of the

absolute scattering cross sections because differences in the optical model

parameters are expected to arise from the nuclear part of interaction rather

than the Coulomb part. Rutherford scattering is purely Coulomb interaction,

and the centre of mass cross section for any charged particle (zp) and target

combination (zt) is(
dσ

dΩ

)
Rutherford

= 10

[
zpztα(~c)

4Ecm sin2(θcm/2)

]2

mb/sr. (3.19)

Here θcm is given in Eq. (3.14), Ecm = mt
mt+mp

Elab is the projectile energy

in the center of mass, α = 1/137 is the fine structure constant and ~c =

197 MeV-fm. The Rutherford cross sections are multiplied so that they have

the same units as the ones obtained from Eq. (3.6). The DWBA ratio-to-

Rutherford cross sections were obtained from DWUCK4 [44] using diffrent

OMPs. Based on previous work [55] with 138Ba(p, t) and 138Ba(p, p) and our

experimental data, we chose the OMP that gave the minimum χ2, defined

by

χ2 =
∑
i

[YDWBA(θi)− YExp(θi)]2

σ2
Exp(θi)

. (3.20)

In the above, YDWBA(θi) and YExp(θi) represent DWBA and experimental

cross sections respectively. The parameter σExp(θi) denotes the variances of

YExp(θi) and θi represent the CM angles described previously.
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Target thickness determination

Since Rutherford scattering dominates at small angles, its cross section can

be used to determine the effective target thickness. Consequently, at small θi,

the measured cross sections are mostly independent of the choice of OMPs.

The number of 136Ba nuclei in the target is given by

Nt =
ρtNAβ

M cos θtarget
0.93, (3.21)

where ρ is the target material density, t is the target thickness, NA is the

Avogadro’s number and M is the molar mass of the target material (136BaO).

The quantity ρt ≈ 40µg/cm2 is the nominal areal density of the target,

provided by the target maker and the factor 0.93 accounts for the isotopic

enrichment of 136Ba. The cos θtarget term accounts for the angle of the target

frame relative to the beam. In the above, β is the correction factor obtained

by normalizing the DWBA calculation to the experimental elastic scattering

data obtained at θlab = 15◦. This small angle was chosen because the (p, p)

cross sections obtained using different proton optical models start diverging

at higher angles due to contributions from the nuclear part of the interaction.

These results are shown in Figs. 3.8 and 3.9 respectively. Based on these data,

we chose to use the OMP parameters recommended by Varner et al. [56] to

analyse our data. The correction factor was β = 0.36±0.01 which allowed to

obtained the measured effective target thickness of 14.4 µg/cm2.
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Figure 3.8: Comparison between experimental data and DWBA predictions

of angular distributions for 136Ba(p, p) elastic scattering. Proton OMPs

were taken from Becchetti and Greenless (BG) [57], Koning and Delaroche

(KD) [58], Varner et al. [56], Walter and Guss (WG) [11].
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Figure 3.9: Comparison between experimental data and DWBA predictions

of angular distributions for 138Ba(p, p) elastic scattering . Proton OMPs

were taken from Becchetti and Greenless (BG) [57], Koning and Delaroche

(KD) [58], Varner et al. [56], Walter and Guss (WG) [11] and Menet et al. [59].
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3.2.8 Beam particles

In order to obtain absolute cross sections, it is important to know the total

number of beam particles incident on the target. For the Q3D, this is ob-

tained using a Faraday cup placed behind the target ladder (at zero degrees

to the beam axis). Since only a very small percentage of the beam inter-

acts with the target material, the undeflected beam current measured on the

Faraday cup is approximately equal to the total beam current incident on the

target. It is connected to the Brookhaven Instruments Corporation (BIC)

current integrator. The measured current (I) is directly proportional to the

number N of beam particles hitting the Faraday cup per second,

N

t
=
I

e
. (3.22)

The BIC converts charge into pulses that can be read out on a scaler mod-

ule (scaler 1). The current scale on the BIC was set to 2 µA, which yielded

a pulse rate of 1 kHz. For each run, the number of beam particles was then

determined using the following relationship,

Nb = Scaler1
2µA

(1000s−1)e
. (3.23)

3.2.9 Dead time corrections

In detector systems, there exists a minimum amount of time required to

process the signals. This minimum processing time is called dead time of

the counting system and it occurs both in the detector as well as in the

data acquisition system (DAQ) [60]. The dead time causes true events to be
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missed being recorded while collecting data. Therefore, absolute measure-

ments always have to correct for such dead time effects. For this experiment,

the events affected by the application specific integrated circuit (ASIC) dead

time of the detector were recorded and binned in channel 0 of the analog-to-

digital convertor (ADC). The fraction of dead events due to this effect was

calculated from the ratio of the number of the counts in the channel 0 to the

total number of counts in the ADC, so that the ASIC dead time correction

factor is

LTDET = 1−

(
channel(i = 0)∑2500
i=0 channel(i)

)
. (3.24)

Similarly, if events were not recorded due to the DAQ dead time and the

current integrator were incremented during this time, missed events were

read into another scaler (scaler 3) for each run. The dead time percentage

for the DAQ was obtained using the ratio of scalar 3 to scaler 1, such that

LTDAQ = 1−
(
Scaler3

Scaler1

)
. (3.25)

3.2.10 Solid angle determination

The solid angle acceptance of the Q3D is controlled by a set of horizontal (X)

and vertical (Y ) slits. The slits are opened or closed using micrometer pre-

cision screwgauges. The aperture is diamond shaped, as shown in Fig 3.10.

The spectrograph has a maximum solid angle coverage of about 15 msr. The

total solid angle coverage of the detector is evaluated from the geometry of
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Figure 3.10: Acceptance slits at the Q3D spectrograph.

the system as

∆Ω =
1

R2

[
4∆X∆Y − 2

(
∆X − A+

A∆Y

B

)(
∆Y −B +

B∆X

A

)]
(3.26)

In the above A, B are the half width and height of the opening, R is the dis-

tance between the aperture and target ladder. The ∆X and ∆Y parameters

represent the distances between the X and Y slits respectively.

3.2.11 Uncertainties in Cross Section

The total uncertainty in the measured values of cross section arises from sta-

tistical uncertainties and several systematic uncertainties that were added in

quadrature. For instance, while estimating the appropriate target thickness,

uncertainties contribute from the choice of optical models, as explained in
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Section 3.3. Additional contributions also arise from the uncertainties in the

laboratory angles, masses of nuclei, reaction Q values, and the beam energy.

3.3 DWBA calculation

The orbital angular momentum transfer (L) to excited states were assigned

by comparing the experimental angular distributions with the DWBA pre-

dictions. As discussed in Section 2.5, only natural parity states would be

strongly populated in the (p, t) reaction. Thus the spin-parity of the states

is determined based on agreement with the shapes of angular distributions.

Various DWBA codes have been developed to evaluate theoretical angu-

lar distributions for transfer reactions. The DWBA analysis used in this

thesis were carried out using the DWUCK4 [44] code described briefly in

Appendix A.

Optical Model Parameters for DWBA

For the entrance p + 136Ba channel, we used the OMPs recommended by

Varner et al. [56] based on the discussion in Section 3.2.7. For the exit

t + 134Ba channel, since we did not have triton scattering data available, we

compared our data with the DWBA calculations performed with the OMPs

recommended by Li, Liang, and Cai [61] and Becchetti and Greenless [62].

We observe that the global OMPs recommended by Liang, and Cai showed

better agreement with our data. These results are shown in Fig. 3.11.

Therefore, we used the proton OMPs set from Ref. [56] and the triton OMPs

set from Ref. [61] in our DWBA analysis. The proton OMPs are fixed for
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proton energy Ep = 22 MeV while the triton parameters are calculated for

each excitation energy as a function of triton outgoing energy. The two-

neutron transfer form factor was obtained by adjusting the depth of the real

volume part of the potential such that each neutron transferred had a binding

energy of half the two-neutron separation energy and the excitation energy

of the recoil nucleus,

BE =
S2n(136Ba) + Ex(

134Ba)

2
. (3.27)

The OMPs used to perform our calculations are presented in Table 3.2.
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Figure 3.11: Triton angular distribution for the ground state in 134Ba. The

DWBA curves are obtained using two different triton OMPs, t + 134Ba set

by Li, Liang, and Cai [61] and t + 134Ba set by Becchetti and Greenless [62].
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Table 3.2: Optical model parameters used our analysis. The proton OMPs

are from Varner et al. [56], triton OMPs from Li, Liang, and Cai [61] and

neutron OMPs are from Ref. [57]. The triton parameters are given as a

function of triton energy Et, mass number A = 134, atomic number Z = 56,

and neutron number N = 78.

Parameters p t n

Vv (MeV) 53.1023 137.6-0.1456Et + 0.0436E2
t -

+ 4.3751(N − Z)/A + 1.0474Z/A1/3

rv (fm) 1.20 1.1201 - 0.1504A−1/3 1.170

av (fm) 0.690 0.6833 + 0.0191A1/3 0.75

Wv (MeV) 1.158 7.383 + 0.5025Et - 0.0097E2
t -

rWv (fm) 1.248 1.3202 - 0.1776A−1/3 -

aWv (fm) 0.690 1.119 + 0.01913A1/3 -

Ws (MeV) 36.165 37.06 - 0.6451Et - 47.19(N − Z)/A -

rs (fm) 1.248 1.251 - 0.4622A−1/3 -

as (fm) 0.690 0.8114 + 0.01159A1/3 -

Vso (MeV) 23.6 1.9029 -

rso (fm) 1.106 0.46991 + 0.1294A−1/3 -

aso (fm) 0.63 0.3545 - 0.0522A1/3 -

rc (fm) 1.26 1.4219 -



Chapter 4

Results and Conclusions

4.1 Results and discussion

In this experiment, 66 energy levels in 134Ba were observed in total, with most

of the experimental angular distributions showing good agreement with the

DWBA calculations. About 22 states are newly identified in this work and

spin-parity assignments have been made for most of these states. We also

observed one new 0+ state and verified the existence of previously identified

0+ states. Fig. 4.1 shows the 136Ba(p, t) spectra obtained from this experi-

ment at θlab = 25◦, and all the observed states in 134Ba from this experiment

are listed in Table. 4.1. The angular distribution plots for all these states are

shown in Appendix B.

71
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Figure 4.1: Triton spectra corresponding to excited states in 134Ba obtained

from this experiment. These data were collected with five magnetic field

settings (momentum bites) and represent one angle at θlab = 25◦. The 0+

states observed in this experiment and specific contaminants are labeled in

this figure.

4.1.1 Excitation energy levels in 134Ba
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Table 4.1: Excitation energy levels in 134Ba observed in

this experiment compared to previously known informa-

tion, taken from the Nuclear Data Sheets [63].

Known This work

Ex Jπ Ex Jπ

0 0+ 0 0+

604.7223 (9) 2+ 604.8 (2) 2+

1167.968 (3) 2+ 1168 (2) 2+

1400.590 (4) 4+ 1400.6 (2) (4+, 5−)

1760.555 (22) 0+ 1760.3 (2) 0+

1969.921 (4) 4+ 1970.1 (2) 4+

1986.35 (21) 5− 1986.2 (1) (4+, 5−)

2029.242 (18) 2+ 2029.7 (1) 2+

2088.288 (17) 2+ 2087.9 (6) 2+

2118.195 (9) (4+) 2118.7 (2) 4+

2159.683 (21) (0)+ 2159.64 (9) 0+

2254.95 (14) 3− 2254.8 (1) 3−

2271.57 (24) 7− 2271.2 (2) 7−

2334.76 (6) (1,2+) 2334.2 (1) 2+

2371.02 (7) 2+ 2371.5 (4) 0+

2379.112 (18) 0+ 2379.0 (4) 2+

2418.4 (3) (4+,5−)

2444.9 (5) 4+

2464.28 (6) (2+) 2464.1 (3) 2+

2480.34 (5) (2,3) 2480.2 (3) 3−

2488.434 (21) 0+ 2488.4 (3) 0+

2564.712 (19) (1+,2+) 2565.0 (3) 2+

2574.31 (10) (2+) 2574.5 (4) 2+

2587.9 (4) (4+,5−)

2599.88 (4) 2+ 2600.6 (3) 2+
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Table 4.1 – continued from previous page

Ex Jπ Ex Jπ

2635.1 (3) (4+,5−)

2680.9 (5) 3−

2702.8 (6) (4+,5−)

2729.23 (4) (1+,2+) 2729.0 (3) 0+

2747.965 (24) 2+ 2750.8 (5) 2+

2828.50 (4) (1+,2+) 2830.5 (3) 2+

2835.9 (4) (8+) 2837.8 (4) (4+,5−)

2851.26 (6) 2+ 2854.3 (4) 2+

2883.3 (5) 4+

2950.56 (24) (3,4) 2953.8 (5) (4+,5−)

3049.9 (5) 3−

3053.6 (7) 3−

3061.29 (6) 2(+) 3060.8 (5) 2+

3074.72 (25) (2) 3075.1 (4) 5−

3079 (10) 4+ 3079.9 (7) (4+,5−)

3097.4 (9) (4+,5−)

3160.07 (19) (1,2+) 3160.5 (5) 1−

3195.7 (4) 3−

3245.88 (19) 1 3245.3 (7) (6+, 7−)

3281.6 (6) 3−

3368.97 (6) (1,2) 3369.5 (6) 2+

3383.5 (4) 2+

3432.15 (1) (1,2+) 3431.42 (5) (1−,2+)

3451.0 (4) 1,2+ 3452.1 (6) (4+)

3528.1 (4) 0+

3548.5 (4) (1,2+) 3545.5 (5) 2+

3652.1 (7) (1,2+) 3653.5 (5) 1−

3684.2 (4) 2+ 3684.6 (5) 4+

3705 1 3707 (1) (4+,5−)

3715 (2) 2+
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Table 4.1 – continued from previous page

Ex Jπ Ex Jπ

3733.6 (8) 4+

3744.4 (6) 2+

3754 (10) 3758.9 (6) (6+, 7−)

3798 (1) (3−, 4+)

3836 1 3832 (1) (4+,5−)

3843 (1) (4+,6+)

3867.7 (8) (4+,5+)

3890.5 (5) 2+

3899.1 (11) 3905.9 (5) (4+,5+)

3963.3 (6)

3980 (1) 3984.8 (6)

4.1.2 Spin-parity assignments

E = 1400 keV

The excited state at 1400 keV was first observed in the angular correlation

of gamma rays of 134Ba resulting from the decay of 134Cs [64]. This energy

level was measured at 1402 keV with the spin of 4 and the parity of this

state was not reported. This state was remeasured in a (γ, γ) coincidence

experiment [65] thereby confirming the 4+ assignment. In our work, the

DWBA prediction favors a 5− assignment. Hence we assign Jπ = (4+, 5−)

for this state.

E = 1986 keV

The energy leve at 1986 keV with assignment spin-parity Jπ = 5− was first

observed in the excitation energy spectrum of (p, t) reaction on 136Ba, at the



CHAPTER 4. RESULTS AND CONCLUSIONS 76

proton beam energy of 52 MeV [66]. This energy level was also reported in

(n, n′γ) measurements [67] at the energy of 1986.08 keV with Jπ = 5−. In

our work, both L = 4 and 5 reproduce the experimental angular distribution.

However the L = 4 angular distribution has a lower χ2. Thus, we assigned

Jπ = (4+, 5−) to this state.

E = 2118 keV

The 2118 keV energy level was assigned Jπ = (4+) in the level scheme of

134Ba from the (n, n′γ) experiment [67]. Our DWBA angular distributions

for L = 4 agrees with experimental data. So we assign Jπ = 4+ to this state,

now removing the ambiguity.

E = 2159

The level at 2159 keV was assigned a tentative Jπ = (0+) in the Nuclear

Data Sheets of 134Ba [66, 67, 68]. This state was also recently reported at

2159 keV from 136Ba(p, t) measurements [69]. In our work we reproduce the

angular distribution for this state using L = 0 transfer. Thus, we assign Jπ

= 0+ for this level.

E = 2334 keV

The measurement of the 2334 keV level in 134Ba was first observed from the

decay of 134Ce → 134La by observing the γ-ray transitions in 134La [68].

The Jπ of this level was completely unknown from these measurements.

Later (n, n′γ) studies [67] reported the state with a Jπ assignment of 1, 2+.

This level was observed again in the (p, t) reaction on 136Ba and assigned as
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Jπ = 2+ [69]. In our work, the experimental angular distribution reproduced

the characteristic of an L = 2 transfer. Thus, we assign this state as Jπ = 2+.

E = 2371 keV

The 2371 keV level was previously investigated through 134Ba(n, n′γ) mea-

surements [67]. The γ-ray angular distributions from this work favored the

Jπ = 2+. However, in our work the experimental angular distribution is con-

sistent with the DWBA prediction for an L = 0 transfer. Thus, we assigned

this level Jπ = 0+.

E = 2379 keV

This state was reported to be Jπ = 0+ [68, 67, 70]. However, our angular

distribution shows a characteristic L = 2 shape. Therefore we assign the

spin-parity of this energy level to be 2+.

E = 2418 keV

Spin-parity of Jπ = 4+ was assigned for a state at 2420 keV using a 136Ba(p, t)

reaction [69]. In this work, we observed this level at 2418 keV. The experi-

mental angular distribution is reproduced by both L = 4 and L = 5 transfer.

Since we could not separate the two possibilities, we propose a Jπ = (4+, 5−)

for this level.

E = 2444 keV

This energy level is observed for the first time and its experimental angular

distribution agrees with an L = 4 transfer. Therefore, the spin-parity of level
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is assigned as Jπ = 4+.

E = 2464 keV

The 2464 level was assigned as a (2+) from 134Ba(n, n′γ) measurements [67].

In this work, the angular distribution is consistent with a 2+ distribution.

Thus, we confirm the spin-parity of this level to be 2+ .

E = 2480 keV

Two energy levels were previously reported in the vicinity of this energy.

The first at 2479±10 keV with Jπ = 4+ [70]. The second was observed at

2480 keV from 134Ba(n, n′γ) measurements with Jπ = (2, 3) [67]. Our DWBA

angular distribution for L = 3 agrees with the experimental data, hence it

has been assigned as a 3− state.

E = 2564 keV

The first measurement of 2564 keV level was reported as Jπ = 1+, 2+ [68, 67].

A recent measurement done using (p, t) reaction on 136Ba proposed a 2+

assignment for a state at 2566 keV [69]. The angular distribution for this

state matches an L = 2 transfer. Hence we assigned this as Jπ = 2+.

E = 2574 keV

The angular distribution for this state is reproduced by an L = 2 transfer.

Thus we assign this state to be Jπ = 2+, which clarifies a previous ambiguity.
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E = 2587 keV

This level was observed in previous 136Ba(p, t) studies and was assigned a

spin-parity of 4+ [69]. In this work, we compared both L = 4 and L =5

transfer with the experimental angular distribution. However, since we could

not separate the two possibilities, we suggest an assignment Jπ = (4+, 5−)

for this level.

E = 2635 keV

Previous (p, t) reaction on 136Ba studies identified a state with Jπ = 4+ at

2633 keV [69]. We compared both L= 4 and L= 5 transfer with experimental

data. However, we could not separate the two possibilities. Thus we propose

a Jπ = (4+, 5−) assignment.

E = 2680 keV

Previous studies measured a level at 2677 keV and reported it as J = 3, 4 [67].

This level was remeasured to be at 2679 keV using the 136Ba(p, t) reaction

and Jπ = 3− was assigned [69]. In this work, the experimental angular

distribution reproduced an L = 3 transfer, therefore we confirm this level to

be a Jπ = 3− state.

E = 2702 keV

The 2702 keV level was proposed to be a (4+) state in Ref. [69]. In this

work we compared L = 4 and 5 transfers with the experimental angular

distribution. However, we could not separate these two possibilities from the

angular distributions.
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E = 2729 keV

In the adopted level scheme for 134Ba, an excited state at 2729 keV is reported

as Jπ = 1+, 2+ [63]. However in a recent 136Ba(p, t) measurement [69], a state

at 2727.5 keV is reported to be 0+. Our work confirms this assignment.

E = 2830 keV

A state at 2828.49 keV was first observed in the level scheme of 134Ba resulting

from the beta decay of 134La, and reported as Jπ = 1+, 2+ [68]. Later mea-

surements observed that this level ought to have a Jπ = 2+ assignment [69].

Based on our experimental and DWBA angular distributions, we confirm

that it is Jπ = 2+.

E = 2837 keV

The 2835 keV state was proposed to have a spin-parity of (8+) [71]. In this

work, two DWBA L transfer (4,5) were compared with the experimental

data. It was difficult to separate the two possibilities and assign confidently

the spin-parity of this state. Therefore, we suggest that the Jπ of this state

is (4+, 5−).

E = 2883 keV

Recent measurements using the 136Ba(p, t) reaction reported the level at 2883

keV to be 0+ state [69]. However our angular distributions show that it is

most likely Jπ = 4+.
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E = 2953 keV

Previous 134Ba(n, n′γ) measurements showed that the 2950.56 keV state had

a spin assignment of (3,4) [67]. Our angular distribution is more consistent

with an L = 4 transfer. Thus we assigned this state as Jπ = 4+.

E = 3049 keV

This level is newly observed and the experimental data agrees with an L =

3 transfer. Hence we assigned Jπ = 3− to the state at 3049 keV.

E = 3053 keV

A level at 3054 keV was previously observed in (p, t) reaction on 136Ba with

a Jπ = 2+ assignment [69]. Our angular distribution however agrees better

with an L = 3 transfer. Thus we assigned Jπ = 3− for this level.

E = 3060 keV

A study of this level observed from the decay of 134La, showed that the

spin-parity could be 1+, 2+ at 3061 keV [68]. Other measurements using

134Ba(n, n′γ) reported a 2(+) assignment [67]. Our experimental angular dis-

tribution is consistent with L = 2, so the ambiguity on the spin-parity of this

level is resolved with Jπ = 2+.

E = 3079 keV

A previous study of 134Ba(p, t) proposed state at 3079 keV with spin-parity

4+ [66]. We considered two possibilities of L transfer (4,5). Unfortunately,
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we still could not resolve the L = 4 and 5 ambiguity from the angular distri-

butions. We suggest that this state is (4+, 5−).

E = 3097 keV

This level is observed for the first time and both L = 4 and 5 are possible,

based on the experimental angular distributions. We report this level as a

Jπ = (4+, 5−).

Ex = 3160 keV

Previous measurements described the 3160 keV level to be either a 1− or 2+

state [68, 67]. Our angular distribution agrees with L = 1 transfer. Therefore,

the energy level of 3160 keV is assigned Jπ = 1−.

E = 3195 keV

Previous studies on 136Ba(p, t) proposed a possible 0+ assignment for a 3181±8

keV state [70]. Recent 136Ba(p, t) studies reported a state 3182 with a

Jπ = (3−) [69]. In this work the level at 3195 keV is observed and the data

agrees with a L = 3 transfer. Thus we assigned this level to be Jπ = 3−.

E = 3245 keV

The first observation of the level in 134Ba was from the decay of 134La. A

tentative (1+) was assigned to this level [66]. The latter was again observed

in 134Ba(n, n′γ) measurements and the spin-parity of the state was reported

as possibly (1+) [67]. This state was again identified in a photon scattering

experiment on 134Ba and a spin (1+) was suggested [72]. However, due to
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the selection rules that restricts the spin-parity of the states to the choice of

natural-parity states, this possibilty has not been considered. Moreover, the

angular distributions could not show a characteristic of the L = 1 transfer.

However, we explored the L = 6 and 7 transfer to assign a Jπ for this level.

So, in this work we suggest the Jπ = (6+, 7−) at this level.

E = 3281 keV

There was no level observed at this energy from previous studies. Our exper-

imental angular distributions for this level indicates a L = 3 transfer. Thus,

this level is assigned Jπ = 3−.

E = 3369 keV

The energy level of 3369 keV was previously known to be either a J = 1

or J = 2 state [68, 67]. Another observation using 136Ba(p, t) assigned this

state to be Jπ = 2+ [69]. From our angular distributions, we confirm this

level has a Jπ = 2+.

E = 3383 keV

At 3380 keV, it was reported a Jπ = (4+) [69], but our experimental angular

distribution agreed with L = 2+. Therefore, we assigned a Jπ = 2+ at this

level.

E = 3452 keV

Two states were previously observed within a very small energy range for the

3452 keV level. The first measurement predicted the state to be at 3450 keV
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with Jπ = (1+) [68, 72]. Other experiments mention a 3451 keV state with

a Jπ = 1,2+ [67]. Because of the selection rules in the two-nucleon transfer

reaction, the 1+ state is weakly populated, and predictions using L = 2 do

not match our measured distribution. However using L = 4 we are able to

reproduce the data. Therefore, a possible (4+) state is assigned to the 3452

keV level. But we suggest this be investigated further.

E = 3545 keV

Previous studies via the decay of 134La reported a Jπ = 1, 2+ at 3548 keV.

Our experimental angular distribution reproduced the L = 2 transfer. Thus

we confidently assign this to be a Jπ = 2+ state.

E = 3653 keV

Multiple assignments were proposed in this energy region. The first assign-

ment was made from the decay of 134La where a Jπ = 1+, 2+ was proposed

at 3652 keV [68]. The second assignment was made using a 136Ba(p, t) reac-

tion, where a Jπ = 4+ was proposed [69]. Our DWBA calculations assuming

L = 1 better reproduces the experimental data. Therefore we assigned this

level as a 1−.

E = 3684

The energy level at 3684 keV was previous observed using 134Ba(n, n′γ)

mesasurements and the Jπ = 2+ was assigned [67]. However, in this work

the experimental angular distribution data showed a reasonable agreement
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with the L = 4 transfer. Therefore, we suggested the Jπ = 4+ assignment at

this level.

E = 3707 keV

The energy level of 3707 keV was measured to be 3705 keV, with J = 1 in a

134Ba(γ, γ′) experiment [72]. But our DWBA calculations for L = 1 transfer

do not agree with the experimental data. We considered two possibilities of

L transfer (4, 5). Therefore, we suggest that this state is (4+, 5−).

E = 3890 keV

The level at 3890 keV is observed for the first time and the experimental

angular distribution indicates an L = 2 transfer. Hence we assigned this

level a spin-parity of Jπ = 2+.

E = 3905 keV

The data sheets of 134Ba [63] show a state at 3899 keV, with undefined spin-

parity. Our work observed the state at 3905 keV with a proposed Jπ =

(4+, 5−).

E = 3963 keV

The level at 3963 keV is observed for the first time. But the angular distri-

bution data are inconclusive for this state.
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E = 3984 keV

The level at 3980 keV is listed in the data sheets for 134Ba [63]. In this work,

we observe a state at 3984 keV as well, but our measured angular distribution

could not allow a reliable extraction of the spin-parity information.

4.1.3 Implications for neutron pairing correlations

In this work a total of seven 0+ states are identified in 134Ba, three of which

were already known previously [63]. Three other 0+ states previously had

ambiguities regarding their spin-parity assignments, that are now resolved.

We also observe one new 0+ state at 3528.1 keV. Additionnally, we do not

observe the well known 0+ states at 2336 keV, 2874keV [63], 3395 keV [69]

and other potential 0+ states at 2874 keV, 2996 keV, 3181 keV, 3501 keV,

3618 keV reported in the data sheets of 134Ba [63] and 2961 keV, 3602 keV,

3750 keV reported in a recent 136Ba(p, t) measurement [69].

The (p, t) strength of 0+ excited states relative to the ground state is used

as a factor to evaluate neutron-pair correlations. This strength is calculated

using the following relationship

ε =

(
( dσ
dΩ

)exp
0+ex

( dσ
dΩ

)dwba
0+ex

)(
( dσ
dΩ

)exp
0+gs

( dσ
dΩ

)dwba
0+gs

)−1

. (4.1)

The above ratio removes the Q-value dependence on the cross sections. Our

results for the relative L = 0 (p, t) strengths are shown in Table 4.2. We also

plot in Fig. 4.2 the angular distributions of the excited 0+ states in 134Ba

observed in our experiment.

In the above, we compare relative normalizations described by Eq. (4.1) for

the most forward angle (θCM ∼ ◦) and the forward angle data for the first
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Table 4.2: Relative (p, t) strength calculations of all excited 0+ states in 134Ba

observed in this experiment. The integrated strength calculations take into

account all the 0+ states relate to the ground state.N is the DWBA to data

normalization.

Ex (keV) σ (mb/sr) ε (θCM ∼5◦) N (5◦-15◦) ε(%)

0 3.48(9) 100 17439(323) 100

1760.3(2) 0.184(7) 10.6(5) 1805(49) 10.4(3)

2159.64(9) 0.224(8) 16.5(7) 2936(72) 16.8(5)

2371.5(4) 0.007(1) 0.6(1) 171(16) 0.98(9)

2488.4(3) 0.075(4) 7.0(4) 1394(50) 8.0(3)

2729.0(3) 0.028(2) 3.1(2) 833(36) 4.7(2)

3528.1(4) 0.004(1) 0.9(3) 269(39) 1.5(2)

Σ 38(1) 42.5(8)

three angles (5◦-15◦) to determine the fragmentation of the L = 0 (p, t)

strength. The latter are more reliable as they use more data points in a

region where DWBA is best satisfied.
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Figure 4.2: Angular distributions of 0+ states in 134Ba, observed with the

136Ba(p, t) reaction.

4.2 Conclusions

In conclusion, we studied neutron pairing correlations using 136Ba(p, t) re-

action. In this experiment, we identified a total of seven 0+ states wherein

one 0+ state is being reported for the first time and we could resolve the
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ambiguity in spin-parity for other three previously known states. We also do

not observe several other predicted 0+ states from previous investigations. In

addition, 21 states were newly observed in our experiment, wherein we assign

definite spins and parities for 19 states. We also observe a ∼ 40% fragmenta-

tion in the (p, t) strength to 0+ states indicating a breakdown in the neutron

BCS approximation for 134Ba. This is in addition to a similar breakdown

from superfluid behavior observed in 136Ba [55]. Our observations clearly in-

dicate that since the (p, t) strength continues to be fragmented over excited

0+ sates in another even Ba nucleus with N ≤ 82, clearly deformation effects

play an important role. The parent 0νββ decay nucleus (136Xe) has neutron

number N = 82 (it is singly closed shell) and is therefore nearly spherical.

The work of Ref. [55] shows that 136Ba in its ground state need not be nearly

spherical as 136Xe or 138Ba, both of which have N = 82. This work supports

the claim that the nuclear shapes continue to vary significantly for even bar-

ium nuclei with decreasing neutron number. This prompts a reassessment

of the differences in nuclear deformation between 136Xe and 136Ba for future

NME calculations of this important case.



Appendix A

DWUCK4 code

A.1 General description of DWUCK4

DWUCK4 is a computer code that calculates the scattering and reaction

amplitudes using the distorted wave Born approximation. The calculations

of transition amplitude for the reaction A(a, b)B are performed assuming a

zero-range interaction between the coordinate of incoming and outgoing wave

functions. This approximation is valid for the calculation of particle transfer

reactions, and the transition amplitudes for the DWBA take into account

any combination of spin 0, spin 1/2 or spin 1 of the incoming and outgoing

systems [44]. The optical potential used by DWUCK4 is similar to the OMP

90
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form explained in Section 2.3 and it uses OPTION = 1, 2 and 4 given by,

V (r) = −Vvfv(r, Rv, av)− iWvfw(r, Rw, aw) OPTION = 1

+ i4WIas
d

dr
fs(r, Rs, as) OPTION = 2

+
(Vso + iWso)

r

d

dr
fso(r, Rso, aso)~l·~s OPTION = 4

(A.1)

The differences between the global OMP and DWUCK4 lFukudaie in the

value of WI and Vso. WI = 4×Ws, the terms ~σ·~l which is replaced by ~l·~s, and

the potential used in DWUCK4 does not include the λ2
π factor. Therefore,

the strength of the spin-orbit interaction potential used in DWUCK4 should

be four times the strength of the spint-orbit potential defined with the λ2
π ≈

2 factor and an ~σ·~l operator, V DWUCK
so = 4 × V OMP

so . The DWUCK4 input

file is described below.

A.2 DWUCK4 input file

The DWUCK4 input file is written following the FORTRAN77 format, and

a sample of its file is shown in Fig A.1.

The input files of DWUCK4 are composed of seven input blocks. The first

four input blocks describe the initialization variables. Blocks 5 and 6 de-

scribe the OMP to calculate the distorted waves for entrance and exit chan-

nels respectively, and the last block describes the core transferred particle

interaction.
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Figure A.1: Input file sample for L = 2 transfer in 136Ba(p, t)134Ba reaction.

Input Block 1

This input block is divided in two parts. The first part is composed of 17

digits referred to as ICON(i) which initializes the program and allows the

outputs to be generated. For instance, the first digit being 0 means do not

read input block 2, the first digit being 1 means read the input block 2, and

the digit 9 is used to stop the program. The second part is represented by

60 characters, beginning at column 21. This is used to give details of the

reaction calculation.

Input Block 2

This input block gives the number of angles for the cross section calcula-

tion (N-ANGLES), specifies the the initial angle (ANGLE1) and the angle

increment (D-ANGLE). The angles are set in degrees, and if there is no data
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input in this block, the program set the interval from 0◦ to 180◦ with 5◦ as

increment.

Input Block 3

This input block sets the maximum number of partial waves (LMAX) that

are used in the calculation, the maximum number of angular momentum

transfers (NLTR), the orbital (LTR(I)) and the total (JTR(I)) angular mo-

mentum transfer. The value of JTR is twice the J transfer.

Input Block 4

This input block has five terms, the integration step-size for the radial co-

ordinate (DR), the lower (RMIN) and upper (RMAX) cuttoff for the radial

integrals, the Coulomb excitation scale factor (COUEX) and the Finite range

correction factor (FNRNG).

Input Block 5

This input block has multiple inputs that provide the information about the

entrance channel and specifies the optical model parameters choosen for the

distorted waves. The first line sets the laboratory energy of the proton, the

mass of proton in amu, charge of proton, the mass of 136Ba in amu and charge

of Ba nucleus, the reduced charge radius (r0c), the diffuseness of charge radius

(AC), the non locality parameter (PNLOC) and twice the spin of the proton.

The second line gives the potential option as established in Eq (A.1), which

gives the type of potential, for example OPTION = 1 denotes the volume

part of interaction as defined by the Volume Wood-Saxon potential (V (r)),
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OPTION = 2 represents the surface part of interaction (WI = 4×WOMP
s ),

and OPTION = 4 represents the spin-orbit part of interaction (Vso = 4 ×

V OMP
so and Wso = 4×WOMP

so ). The negative value for option means that the

current potential input block is the last one.

Input Block 6

This input block is the same as the input block 5 but the only difference is

that the distorted waves correspond to the (t+134Ba) channel and the proton

energy is replaced by the Q-value of a specific excited state in 134Ba.

Input Block 7

This input block represents the interaction between the transferred particle

and the core nucleus. The input lines have the same meaning as the lines of

input block 5 and 6 but that the projectile energy is replaced by the bind-

ing energy of the single particle transferred. The input lines varie from one

reaction model to another, for example the form factor of (p, t) reaction is

calculated using ICON(2)=2.

An extra line is added to the input lines in this block, it reads the number

of nodes in the radial function excluding the origin and infinity (FN), the or-

bital angular momentum for the radial function (FL), twice the total angular

momentum quantum number of the radial function (2*FJ), twice the intrinic

spin of the radial function (2*FS), and the scaling factor for the potential

defining the radial function (VTRIAL).

DWUCK4 output is by default displayed in the screen but can be transported
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into a text file using the following terminal command,

./dwuck4 dwuck.inp > dwuck.out.



Appendix B

136Ba(p, t)134Ba Angular distributions

Angular distributions for the 136Ba(p, t) reaction are plotted below. The

DWBA curves are obtained using DWUCK4 code, we used proton OMPs

recommended by Varner [56] and triton OMPs by Li, Liang and Cai [61].
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